#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 #define WPT 8 #define TS 32 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { int row = threadIdx.x; int col = threadIdx.y; int global_row = TS * ( blockIdx.x ) + threadIdx.x; int global_col = TS * ( blockIdx.y ) + threadIdx.y; __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; float ABsub[WPT]; for(int w = 0; w < WPT; w++){ ABsub[w] = 0.0f; } const int RTS = TS/WPT; const int num_tiles = (K % TS == 0)? K / TS : K / TS +1; for(int t = 0; t < num_tiles; t++){ for(int w = 0; w < WPT; w++){ const int t_row = TS * t + row; const int t_col = TS * t + col; if( t_col >= K ) Asub[row + w*RTS][col] = 0; else Asub[row + w*RTS][col] = A[(global_row + w*RTS) * K + t_col]; if( (t_row >= K) || (global_col >= N) ) Bsub[row + w*RTS][col] = 0; else Bsub[row + w*RTS][col] = B[(t_row + w*RTS)*N + global_col]; } __syncthreads(); for(int k = 0; k < TS; k++){ for(int w = 0; w < WPT; w++){ ABsub[w] += Asub[row + w*RTS][k] * Bsub[k][col]; } } __syncthreads(); } for(int w = 0; w < WPT; w++){ if(global_col < N) C[(global_row + w*RTS)*N + global_col] = ABsub[w]; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { M = _M, N = _N, K= _K; int m = (M/TS)*TS; // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 gridDim( ( (Mend[i] - Mbegin[i])/WPT + TS/WPT -1) / (TS/WPT) , (N + TS-1)/TS , 1); dim3 blockDim(TS/WPT, TS, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], m, N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU int m = (M/TS)*TS; for (int i = 0; i < num_devices; i++) { Mbegin[i] = (m / num_devices) * i; Mend[i] = (m / num_devices) * (i + 1); } Mend[num_devices - 1] = m; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K , (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy( C + Mbegin[i] * N , c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } for(int i = Mend[num_devices-1]; i < M; i++){ for(int k = 0; k < K; k++){ float aik = A[i*K + k]; for(int j = 0; j < N; j++){ C[i*N + j] += aik * B[k*N + j]; } } } }