#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define TS (32) #define WPT (16) #define RTS (2) #define MAX_NUM_GPU 4 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K, int numTiles) { const int row = threadIdx.x; const int col = threadIdx.y; const int globalRow = TS * blockIdx.x + threadIdx.x; const int globalCol = TS * blockIdx.y + threadIdx.y; __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; float acc[WPT]; for(int w=0; w>>(a_d[i], b_d[i], c_d[i], rows[i], N, K, numTiles); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { rows[i] = i==0? M/num_devices + M%num_devices : M/num_devices; } // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (rows[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (rows[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU int offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + offset * K, (rows[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); offset += rows[i]; } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs int offset = 0; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + offset * N, c_d[i], (rows[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); offset += rows[i]; } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }