#include "convolution.h" #include #include #include #define CUDA_CALL(f) { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } __global__ void sgemm(float *_input, float *_filter, float *_output, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { int n = blockIdx.x; int k = blockIdx.y; int oh = blockIdx.z; int ow = threadIdx.x; const int OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1; const int OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1; float o = 0.0f; for ( int c = 0; c < _C; ++c){ for (int r = 0; r < _R; ++r){ for ( int s = 0; s < _S; ++s){ int h = oh * _stride - _pad + r * _dilation; int w = ow * _stride - _pad + s * _dilation; if (h < 0 || h >= _H || w < 0 || w >= _W) continue; float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w]; float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s]; o += i * f; } } } _output[n * _K * OH * OW + k * OH * OW + oh * OW + ow] = o; } #define MAX_NUM_NODE 2 #define MAX_NUM_GPU 4 static int num_devices = 0; static float *input, *output, *filter; static int N, C, H, W; static int K, R, S; static int OH, OW; static int pad; static int dilation; static int stride; static int mpi_rank, mpi_world_size; // Array of device (GPU) pointers static float *input_d[MAX_NUM_GPU]; static float *filter_d[MAX_NUM_GPU]; static float *output_d[MAX_NUM_GPU]; //static int N, C, H, W, K, R, S, pad, dilation, stride; static int Nbegin[MAX_NUM_NODE], Nend[MAX_NUM_NODE]; static int Gbegin[MAX_NUM_GPU], Gend[MAX_NUM_GPU]; void convolution( float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { input = _input; output = _output; filter = _filter; if (mpi_rank >= mpi_world_size) return; //OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; //OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; //if (mpi_rank == 0) { /*---------- seperating for nodes ----------*/ if (mpi_rank != 0){ input = (float *) aligned_alloc(32, sizeof(float) * N*C*H*W); filter = (float *) aligned_alloc(32, sizeof(float) * K*C*R*S); output = (float *) aligned_alloc(32, sizeof(float) * N*K*OH*OW); } if (mpi_rank == 0){ for (int i=1; i>>(input_d[i], filter_d[i], output_d[i], Gend[i]-Gbegin[i], C,H,W,K,R,S,pad,dilation,stride); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(output + Gbegin[i] * K*OH*OW, output_d[i], (Gend[i] - Gbegin[i]) * K*OH*OW * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } /*---------- merging output ----------*/ if (mpi_rank == 0){ for(int i=1; i= mpi_world_size) return; //if (mpi_rank == 0) { CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup size for each Node for (int i=0; i < mpi_world_size; ++i){ Nbegin[i] = N / mpi_world_size * i; Nend[i] = N / mpi_world_size * (i+1); } Nend[mpi_world_size-1] = N; // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Gbegin[i] = Nbegin[mpi_rank] + (Nend[mpi_rank] - Nbegin[mpi_rank]) / num_devices * i; Gend[i] = Nbegin[mpi_rank] + (Nend[mpi_rank] - Nbegin[mpi_rank]) / num_devices * (i + 1); } Gend[num_devices - 1] = Nend[mpi_rank]; // Allocate device memory for each GPU OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1; OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1; for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&input_d[i], (Gend[i] - Gbegin[i]) * C*H*W * sizeof(float)) ); CUDA_CALL( cudaMalloc(&filter_d[i], K*C*R*S * sizeof(float)) ); CUDA_CALL( cudaMalloc(&output_d[i], (Gend[i] - Gbegin[i]) * K*OH*OW * sizeof(float)) ); } //} } void convolution_final( int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) { if (mpi_rank >= mpi_world_size) return; //if (mpi_rank == 0){ //} }