Samsung DS
System Architeqt/Expert
2022

© Jaejin Lee

Lecture 11

Memory Consistency

0| Afi 2|
M SCHEHI CO|E{AFO] o1 A LHEHE
MSUstm Zaichst 2 EE 25

http://aces.snu.ac.kr/~jlee

THUNDER Research Group QLEDP
Seoul National U ‘\‘;’51 %
Mgttt g A7y Y

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

A Motivating Example

« Expect memory to respect order between accesses to different

locations in a thread

data = 0;
done = false: thread

thread O

data = 5; while (not done);
done = true; print data;

THUNDER Research Group ;ﬁé""’;{o"
Seoul National University g}ﬂ@%ﬁﬁ Lecture 11 - Memory Consistency
MEHED HE A7 o

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

~ The Effect of Reordering

data = 0;
done = false: thread

thread O

data = 5; while (not done);
done = true; print data;

Execution

Execution 2

data = 5; done = true;
done = true: while (not done);

while (not done); print data;
print data; data =5;

prints 5 prints O

THUNDER Research Group :‘0‘
Seoul National U M Lecture 11 - Memory Consistency
e s

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Coherence Helps?

N

« Different orders of data accesses to shared memory yield different

execution outcomes

« Data accesses may be reordered by

« Compiler optimizations

* Underlying architectures

« Coherence does not help

* Only to a single location (i.e., a single cache block)

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
METfsta HE @Ry

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Memory Consistency Models

 Specify constraints on the order in which memory operations (from
any processor) can appear to execute with respect to one another
* When is the updates of memory by a processor visible to another

processor?

* To balance programming complexity and performance
* Used by the programmer to reason about correctness and possible
results of a program
» Used by the system designer to constrain how much accesses can be

reordered by a compiler or hardware

« Contract between the programmer and the multiprocessor system

S

THUNDER Research Group g.!f_f“’;@
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
METfsta HE @Ry

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

- Memory Consistency Models (cont'd)

« Sequential consistency

* Relaxed memory consistency models

* Processor consistency

Weak ordering

Release consistency

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
METfsta HE @Ry

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

~ Sequential Consistency

* The observable outcome of a multithreaded program P is the
same as the outcome of a single thread executing all operations in

P

A total order between operations is defined (atomic operations)
* In this total order, two operations from the same thread of P are

executed in the order specified in P

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
METfsta HE @Ry

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Sequential Consistency (contd.)

* [Lamport, IEEE TOC, 1979] A multiprocessor system is sequentially
consistent if the result of any execution is the same as if the
operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in

this sequence in the order specified by its program

« Known to be inefficient with hardware implementation

THUNDER Research Group gé
Seoul National U ﬁ%& Lecture 11 - Memory Consistency
e

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

- Program Order

« Order in which operations appear in source code
« Straightforward translation of source code to assembly code

* At most one memory operation per instruction

* But not the same as the order presented to hardware by the

compiler

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
METfsta HE @Ry

S

Samsung DS

System Architect/Expert
2022
o o © Jagjin Lee
Possible Executions under SC
- J
» Operations are atomic
* Interleaving semantics
x=0;, y=0; X=0; Y =0;
Thread 0 Thread 1
Unordered, Not
but sequentially sequentially
consistent consistent

THUNDER Research Group ;ﬁé""’;{o"
Seoul National University g},ﬂ@%ﬁﬁ Lecture 11 - Memory Consistency
AETHED HE 2P e

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Reasoning Based on SC

&)

 |f X'is equal to 1 then Y should be 0
« Xisequal to 1 implies S22 is executed before S11

« This implies S21 is executed before S12 due to the program order

x=0; y=0;, X=0; ¥ =
Thread 0 Thread 1

0, Y: O
0, ¥Y: 1
0, Y: 1
1, Y: 1

Lecture 11 - Memory Consistency

THUNDER Research Group §4£RT:¢
Seoul National University v .. Y
MECHstn HE d74 U

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

| SC Violation

x=0; y =0; X 0; Y=0;
Thread 0 Thread 1

print X, Y;

time
S12 Sll: yv = 1;
\
521 S12: X = x; \\
e -- [521 x = 1;
S22 \
\
\ -
N [822 Y v
S11 \
* Not
X:0 sequ.e?tlatlly
Y:0 consisten

THUNDER Research Group 4K K8
Seoul National University M Lecture 11 - Memory Consistency
Bl

Agtistn 4s A7y

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Relaxed Memory Consistency Models

Relaxations in program order
* Preserve dependences

e write — write, write — read, read — write, or

read — read

KX X
nuunn
OO OO

« High performance, but hard to guarantee

[s11:x=x | [sa:vy=y |

correctness for the programmer (difficult to

program) (s12:y=1) (sezix=1)

» Since S21 and S22 have no dependence, they \/

(print X, Y¥;]

can be reordered
* Memory fence (memory barrier) instructions

prevent reordering of memory instructions

THUNDER Research Group ;ﬁé""’;{o"
Seoul National University *ﬁ%ﬁ Lecture 11 - Memory Consistency
MEohEa HE 2Py L

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Performed with respect to ...

J

* Aread by a processor P is performed with respect to another

processor Q when a write by Q cannot affect the value returned

by the reaa

« A write by a processor P is performed with respect to another
processor Q when a read by Q returns the value written by the

Wwrite

THUNDER Research Group gé
Seoul National U ﬁ%& Lecture 11 - Memory Consistency
e

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Processor Consistency (PC)

N J

« Definition
« Before aread is allowed to perform with respect to any other

processor, all previous read must be performed

« Before a write is allowed to perform with respect to any other

processor all previous accesses must be performed

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’b‘%

Mgt A ¥, Lecture 11 - Memory Consistency
EHISLE TS CTE

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Processor Consistency (cont’d)

&)

 Relaxing write — read order
« Allow a read to bypass (complete before) an earlier write in program
order

« Write buffer with read bypassing

x=0; ; ;Y = 0;
Thread O Thread 1
Processor consistent,
but
not sequentially
consistent

THUNDER Research Group ;ﬁé""’;{o"
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
MEHED HE A7 o

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

~ Weak Ordering

 Relax all program orders

* No program orders are guaranteed by the underlying hardware

or compiler optimizations

 Except synchronization operations

* Need to distinguish between ordinary reads/writes and

synchronization operations

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
METfsta HE @Ry

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

| Weak Ordering (contd.)

 Definition
« Before an ordinary read/write is allowed to perform w.r.t. any
processor, all previous synchronization operations must be

performed w.r.t. every processor
« Before a synchronization operation is allowed to perform w.r.t. any
processor, all previous ordinary reads/writes must be performed w.r.t.

every processor

* Synchronization operations obey sequential consistency

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’b‘%

Mgt A ¥, Lecture 11 - Memory Consistency
EHISLE TS CTE

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

| Weak Ordering (contd.)

* Multiple read/write requests can be outstanding at the same time

* Hide read and write latency
« The ordering with respect to a synchronization operation (sync)

must be guaranteed

* read/write — sync, sync — read/write

Weakly consistent, but
not sequentially
consistent

execution 1 execution 2

data =0;

done = false;
processor O processor 1

data =5;
done = true;

done = true;
while (not done);

print data;
data =5;

while (not done);
print data;

data =5; while (not done);
done = true; print data;

prints prints U

THUNDER Research Group £k ’;{0‘
Seoul National University] Lecture 11 - Memory Consistency
Mgcheta 3 A7y ‘

B3l

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Release Consistency

N J

 Relax all program orders, but not w.r.t. synchronization operations

« Two separate synchronization operations
* Acquire: a read operation such as lock(V)

* Release: a write operation such as unlock(V)

* Need to distinguish between ordinary reads/writes and

synchronization operations

« Additionally distinguish between acquire and release operations

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 11 - Memory Consistency
METfsta HE @Ry

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Release Consistency (cont’'d)

N J

 Definition
« Before an ordinary read/write is allowed to perform w.r.t. any
processor, all previous acquires must be performed w.r.t. every

processor

« Before a release is allowed to perform w.r.t. any processor, all

previous ordinary reads/writes must be performed w.r.t. every

processor

* Acquire and release operations are sequentially consistent (or

processor consistent)

THUNDER Research Group 4% A’;{o“
Seoul National University ‘\‘;’b‘%

Mgt A ¥, Lecture 11 - Memory Consistency
EHISLE TS CTE

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Release Consistency (cont’'d)

 Specific memory access ordering with

respect to acquire/release must be

read/write

guaranteed

read/write - ~
e read/write — release ‘

* acquire — read/write

read/write

) read/write
read/write

« Memory accesses in the critical section do

read/write

not wait or delay reads/writes outside the

critical section

* Reads/writes following a release (unlock) do read/write

not have to be delayed for the release to read/write

complete Weak ordering Release consistency
* An acquire (lock) needs not to be delayed

for previous reads/writes to complete

THUNDER Research Group 9@4;_5“’;{0"
Seoul National University %@%E% Lecture 11 - Memory Consistency
S

Mghem HE ARy

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

~ Understanding RC

Initially x = 0

processor O processor 1

r(x) (x = 0)

w(x, 5) /x can be 0 or 5)
r(x) (x =0 or 5)

release(L) ;& is 5 due to the releas%

w(x, 7)

(x can be 5 or 7& acquire(L)

r(x) (x =5 or7)

23

THUNDER Research Group S4R1s
Seoul National University

Mgt A Lecture 11 - Memory Consistency
EHISLE TS CTE

