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Lecture 23

Optimizations for GPUs

(Reference: John Cheng, Max Grossman, and Ty McKercher, Professional CUDA C Programming, John Wiley & Sons, 2014)
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X Warps and Thread Blocks

« Warps are the basic unit of execution in an SM

* The thread blocks in the grid are distributed among SMs

* Thread blocks can be configured to be one-, two-, or three-

dimensional

* However, from the hard- ware perspective, all threads are arranged

one-dimensionally
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| Warps and Thread Blocks (cont’d)

* Threads in the thread block are further partitioned into warps
« A warp consists of 32 consecutive threads
« All threads in a warp are executed SIMT fashion
+ All threads execute the same instruction

» Each thread carries out that operation on its own private data
« Threads with consecutive values for threadldx.x are grouped into warps
* For example, a one-dimensional thread block with 128 threads will be
organized into 4 warps as follows:
» Warp O: thread O, thread 1, thread 2, ... thread 31
* Warp 1: thread 32, thread 33, thread 34, ... thread 63

« Warp 3: thread 64, thread 65, thread 66, ... thread 95
« Warp 4: thread 96, thread 97, thread 98, ... thread 127
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Warps and Thread Blocks (cont’d)

* The logical layout of a two or three-dimensional thread block can

be converted into its one-dimensional physical layout
* Using the x dimension as the innermost dimension, the y dimension
as the second dimension, and the z dimension as the outermost
« For example, given a 2D thread block, a unique identitier for each
thread in a block can be calculated using the built-in threadIdx
and blockDim variables:
° threadIdx.y * blockDim.x + threadIdx.x
* The same calculation for a 3D thread block is as follows:
° threadIdx.z * blockDim.y * blockDim.x

+ threadIdx.y * blockDim.x + threadIdx.x
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Branch Divergence

N

* GPUs do not have complex branch prediction mechanisms
 All threads in a warp must execute identical instructions on the
same cycle
* |f one thread executes an instruction, all threads in the warp must

execute that instruction

 This could become a problem if threads in the same warp take

different paths through an application

if (cond) {
} else {
}

S
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Branch Divergence (cont’'d)
 To obtain the best performance, avoid different execution paths
within the same warp
1 Execute 4 Not execute
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Resources for Warps

N

* The local execution context of a warp mainly consists of the following

resources:
* Program counters

* Registers
« Each SM has a set of 32-bit registers stored in a register file that are
partitioned among threads

« A few thousands of registers

» Shared memory

« A fixed amount of shared memory that is partitioned among thread blocks
* The execution context of each warp processed by an SM is

maintained on-chip during the entire lifetime of the warp

 Switching from one execution context to another has no cost

D, cE
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Resources for Warps (cont’d)

* The number of thread blocks and warps that can simultaneously
reside on an SM for a given kernel depends on the number of
registers and amount of shared memory available on the SM and
required by the kernel

* When each thread consumes more registers, fewer warps can be

placed on an SM

* When a thread block consumes more shared memory, fewer thread

blocks are processed simultaneously by an SM
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Occupancy

N

A thread block is called an active block when compute resources,

such as registers and shared memory, have been allocated to it
« The warps it contains are called active warps
* The warp schedulers on an SM select active warps on every cycle and

dispatch them to execution units

 Active warps can be further classified into the following three

types:
 Selected warp: an active warp that is actively executing
* Stalled warp: an active warp that is ready for execution but not

currently executing

* Eligible warp: an active warp that is not ready for execution
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- Occupancy (cont'd)

« A warp is eligible for execution if both of the following two

conditions are met:
 Thirty-two CUDA cores are available for execution

 All arguments to the current instruction are ready
* You need to keep a large number of warps active to hide the
latency caused by warps stalling
« Occupancy is the ratio of active warps to maximum number of
warps, per SM

# of active warps

* occupancy =
p y # of maximum warps

* Less than or equal to 1, the bigger, the better
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Occupancy (cont'd)

* To enhance occupancy,
* Resize the thread block configuration or re-adjust resource usage to

permit more simultaneously active warps
« Small thread blocks: too few threads per block leads to hardware
limits on the number of warps per SM to be reached before all
resources are fully utilized
* Large thread blocks: too many threads per block leads to fewer

per-SM hardware resources available to each thread
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Grid and Block Size

« Keep the number of threads per block a multiple of warp size (32)

e Avoid small block sizes

* Start with at least 128 or 256 threads per block
« Adjust block size up or down according to kernel resource
requirements
« Keep the number of blocks much greater than the number of SMs
to expose sufficient parallelism
« Conduct experiments to discover the best execution configuration

and resource usage
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| Synchronization

* Two levels:
 System-level: wait for all work on both the host and the device to

complete
* cudaDeviceSynchronize () can be used to block the host until all

CUDA operations have completed
« Block-level: wait for all threads in a thread block to reach the same

point in execution

* __ syncthreads()
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Parallel Reduction

* Partition the input vector into smaller chunks
* Have a thread calculate the partial sum for each chunk

« Add the partial results from each chunk into a final sum

int sum = 0;
for (int 1 = 0; i < N; i++)
sum += arrayl[i];

O
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Global Memory Accesses

* Global memory loads/stores are cached
 All accesses to global memory go through the L2 cache
* Many accesses also pass through the L1 cache, depending on the
type of access and the GPU's architecture
« Kernel memory requests are typically served between the device

DRAM and SM on-chip memory using either 128-byte or 32-byte

memory transactions

 Ifboth L1 and L2 caches are used, a memory access is serviced by a
128-byte memory transaction

* If only the L2 cache is used, a memory access is serviced by a 32-byte

memory transaction
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Global Memory Accesses (cont’d)

* On architectures that allow the L1 cache to be used for global

memory caching, the L1 cache can be explicitly enabled or

disabled at compile time
« An L1 cache line is 128 bytes, and it maps to a 128-byte aligned
segment in device memory

* If each thread in a warp requests one 4-byte value, that results in 128

bytes of data per request, which maps perfectly to the cache line size

and device memory segment size
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Aligned and Coalesced Memory Accesses

N J

 Aligned memory accesses
* When the first address of a device memory transaction is an even

multiple of the cache granularity being used to service the

transaction
* Either 32 bytes for L2 cache or 128 bytes for L1 cache
* Performing a misaligned load will cause wasted bandwidth
« Coalesced memory accesses

* When all 32 threads in a warp access a contiguous chunk of memory
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Aligned and Coalesced Memory Accesses (cont’'d)

* To maximize global memory throughput, aligned coalesced
memory accesses are ideal

« A wrap accessing a contiguous chunk of memory starting at an

aligned memory address
* For example, aligned and coalesced memory load operations
require only a single 128-byte memory transaction to read the

data from device memory

memory address 128 160 192 224 256

2222222222222222222222222222222
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thread ID 0O 31
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Aligned and Coalesced Memory Accesses (cont’'d)

* For example, misaligned and uncoalesced memory accesses
require as many as three 128-byte memory transactions to read
the data from device memory

« One starting at offset 0

« One starting at offset 128

« One starting at offset 256

memory address 128 160 192 224 256

I 2 2 22222222222222222222 9 2 2 s
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Bank Conflicts in Shared Memory

 To achieve high memory bandwidth, shared memory is divided

into 32 equally-sized memory modules, called banks
« Can be accessed simultaneously
* There are 32 banks because there are 32 threads in a warp
* Depending on the compute capability of a GPU, the addresses of

shared memory are mapped to different banks in different patterns
* |f a shared memory load or store operation issued by a warp does
not access more than one memory location per bank, the
operation can be serviced by one memory transaction
« Otherwise, the operation is serviced by multiple memory

transactions
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Bank Conflicts in Shared Memory (cont’d)
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