Samsung DS
System Architeqt/Expert
2022

© Jaejin Lee

Lecture 23

Optimizations for GPUs

(Reference: John Cheng, Max Grossman, and Ty McKercher, Professional CUDA C Programming, John Wiley & Sons, 2014)

0|24
MECHSE R GlO|E{ALO| A TSR
MEeCistn Satchst ZBE ot

http://aces.snu.ac.kr/~jlee

THUNDER Research Group QLEDP
Seoul National U ‘\‘;’51 %
Mgttt g A7y Y

Samsung DS
System Architect/Expert
2022

X Warps and Thread Blocks

« Warps are the basic unit of execution in an SM

* The thread blocks in the grid are distributed among SMs

* Thread blocks can be configured to be one-, two-, or three-

dimensional

* However, from the hard- ware perspective, all threads are arranged

one-dimensionally

S

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 23 - Optimizations for GPUs 2
AgTHER #S 2P

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

| Warps and Thread Blocks (cont’d)

* Threads in the thread block are further partitioned into warps
« A warp consists of 32 consecutive threads
« All threads in a warp are executed SIMT fashion
+ All threads execute the same instruction

» Each thread carries out that operation on its own private data
« Threads with consecutive values for threadldx.x are grouped into warps
* For example, a one-dimensional thread block with 128 threads will be
organized into 4 warps as follows:
» Warp O: thread O, thread 1, thread 2, ... thread 31
* Warp 1: thread 32, thread 33, thread 34, ... thread 63

« Warp 3: thread 64, thread 65, thread 66, ... thread 95
« Warp 4: thread 96, thread 97, thread 98, ... thread 127

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 23 - Optimizations for GPUs 3
METfsta HE @Ry ‘

S

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Warps and Thread Blocks (cont’d)

* The logical layout of a two or three-dimensional thread block can

be converted into its one-dimensional physical layout
* Using the x dimension as the innermost dimension, the y dimension
as the second dimension, and the z dimension as the outermost
« For example, given a 2D thread block, a unique identitier for each
thread in a block can be calculated using the built-in threadIdx
and blockDim variables:
° threadIdx.y * blockDim.x + threadIdx.x
* The same calculation for a 3D thread block is as follows:
° threadIdx.z * blockDim.y * blockDim.x

+ threadIdx.y * blockDim.x + threadIdx.x

THUNDER Research Group fg—“ R
Seoul National U) o .
REE LT cxI-‘.lE %}Zi} Lecture 23 - Optimizations for GPUs 4

Samsung DS

System Architect/Expert
2022

© Jagjin Lee

Branch Divergence

N

* GPUs do not have complex branch prediction mechanisms
 All threads in a warp must execute identical instructions on the
same cycle
* |f one thread executes an instruction, all threads in the warp must

execute that instruction

 This could become a problem if threads in the same warp take

different paths through an application

if (cond) {
} else {
}

S

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 23 - Optimizations for GPUs 5
METfsta HE @Ry ‘

Samsung DS

System Architect/Expert
Branch Divergence (cont’'d)
 To obtain the best performance, avoid different execution paths
within the same warp
1 Execute 4 Not execute
$3333333333338333
e $I3333333338333388
ix<0¢ (83T TIITIEEETESE
z=2+3 | J S 4 $IF 4433343338
yeh SYIIIIINININNGY
LR AL AAAAAA00000044
; §3333333338338338383
{ ﬁ THU%??;EEE;J%\;E;UP l Lecture 23 - Optimizations for GPUs 6

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Resources for Warps

N

* The local execution context of a warp mainly consists of the following

resources:
* Program counters

* Registers
« Each SM has a set of 32-bit registers stored in a register file that are
partitioned among threads

« A few thousands of registers

» Shared memory

« A fixed amount of shared memory that is partitioned among thread blocks
* The execution context of each warp processed by an SM is

maintained on-chip during the entire lifetime of the warp

 Switching from one execution context to another has no cost

D, cE

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 23 - Optimizations for GPUs 7
AgTHER #S 2P

Samsung DS

System Architect/Expert
2022

© Jagjin Lee

Resources for Warps (cont’d)

* The number of thread blocks and warps that can simultaneously
reside on an SM for a given kernel depends on the number of
registers and amount of shared memory available on the SM and
required by the kernel

* When each thread consumes more registers, fewer warps can be

placed on an SM

* When a thread block consumes more shared memory, fewer thread

blocks are processed simultaneously by an SM

THUNDER Research Group g.!f_f“’;@
Seoul National University @%@ Lecture 23 - Optimizations for GPUs 8
HErhsta HS A7 L

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Occupancy

N

A thread block is called an active block when compute resources,

such as registers and shared memory, have been allocated to it
« The warps it contains are called active warps
* The warp schedulers on an SM select active warps on every cycle and

dispatch them to execution units

 Active warps can be further classified into the following three

types:
 Selected warp: an active warp that is actively executing
* Stalled warp: an active warp that is ready for execution but not

currently executing

* Eligible warp: an active warp that is not ready for execution

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 23 - Optimizations for GPUs 9
AgTHER #S 2P

D, cE

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

- Occupancy (cont'd)

« A warp is eligible for execution if both of the following two

conditions are met:
 Thirty-two CUDA cores are available for execution

 All arguments to the current instruction are ready
* You need to keep a large number of warps active to hide the
latency caused by warps stalling
« Occupancy is the ratio of active warps to maximum number of
warps, per SM

of active warps

* occupancy =
p y # of maximum warps

* Less than or equal to 1, the bigger, the better

THUNDER Research Group g.!f_f“’;la’
Seoul National University gﬁ%‘@ Lecture 23 - Optimizations for GPUs 10
AETHEra HE A7 i

Samsung DS

System Architect/Expert
2022

© Jagjin Lee

Occupancy (cont'd)

* To enhance occupancy,
* Resize the thread block configuration or re-adjust resource usage to

permit more simultaneously active warps
« Small thread blocks: too few threads per block leads to hardware
limits on the number of warps per SM to be reached before all
resources are fully utilized
* Large thread blocks: too many threads per block leads to fewer

per-SM hardware resources available to each thread

THUNDER Research Group g.!f_f“’;@
Seoul National University -~ ¢4 % Lecture 23 - Optimizations for GPUs 11
HErhsta HS A7 L

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Grid and Block Size

« Keep the number of threads per block a multiple of warp size (32)

e Avoid small block sizes

* Start with at least 128 or 256 threads per block
« Adjust block size up or down according to kernel resource
requirements
« Keep the number of blocks much greater than the number of SMs
to expose sufficient parallelism
« Conduct experiments to discover the best execution configuration

and resource usage

THUNDER Research Group ;g,é“ RN
Seod| Nationa) Jnive ﬁ%& Lecture 23 - Optimizations for GPUs 12
e o

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

| Synchronization

* Two levels:
 System-level: wait for all work on both the host and the device to

complete
* cudaDeviceSynchronize () can be used to block the host until all

CUDA operations have completed
« Block-level: wait for all threads in a thread block to reach the same

point in execution

* __ syncthreads()

THUNDER Research Group g.!f_f“’;la’
Seoul National University -~ ¢4 % Lecture 23 - Optimizations for GPUs 13
METfsta HE @Ry

S

Samsung DS
System Architect/Expert
2022

© Jaejin Lee

Parallel Reduction

* Partition the input vector into smaller chunks
* Have a thread calculate the partial sum for each chunk

« Add the partial results from each chunk into a final sum

int sum = 0;
for (int 1 = 0; i < N; i++)
sum += arrayl[i];

O
e 3
3| 3|

) THUNDER Research Group ?ﬁ;f“’;lb‘
' Seoul National University ‘%@% Lecture 23 - Optimizations for GPUs 14
Mgchera U A7y s

)
9

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Global Memory Accesses

* Global memory loads/stores are cached
 All accesses to global memory go through the L2 cache
* Many accesses also pass through the L1 cache, depending on the
type of access and the GPU's architecture
« Kernel memory requests are typically served between the device

DRAM and SM on-chip memory using either 128-byte or 32-byte

memory transactions

 Ifboth L1 and L2 caches are used, a memory access is serviced by a
128-byte memory transaction

* If only the L2 cache is used, a memory access is serviced by a 32-byte

memory transaction

THUNDER Research Group gé
Seoul National U ﬁ%& Lecture 23 - Optimizations for GPUs 15
e

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Global Memory Accesses (cont’d)

* On architectures that allow the L1 cache to be used for global

memory caching, the L1 cache can be explicitly enabled or

disabled at compile time
« An L1 cache line is 128 bytes, and it maps to a 128-byte aligned
segment in device memory

* If each thread in a warp requests one 4-byte value, that results in 128

bytes of data per request, which maps perfectly to the cache line size

and device memory segment size

THUNDER Research Group gé
Seoul Natio ﬁ%& Lecture 23 - Optimizations for GPUs 16
et

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Aligned and Coalesced Memory Accesses

N J

 Aligned memory accesses
* When the first address of a device memory transaction is an even

multiple of the cache granularity being used to service the

transaction
* Either 32 bytes for L2 cache or 128 bytes for L1 cache
* Performing a misaligned load will cause wasted bandwidth
« Coalesced memory accesses

* When all 32 threads in a warp access a contiguous chunk of memory

THUNDER Research Group ;g,é“ RN
Seod| Nationa) Jnive ﬁ%& Lecture 23 - Optimizations for GPUs 17
Kecheta 35 ul;la e

System Architect/Expert
2022

© Jagjin Lee

Aligned and Coalesced Memory Accesses (cont’'d)

* To maximize global memory throughput, aligned coalesced
memory accesses are ideal

« A wrap accessing a contiguous chunk of memory starting at an

aligned memory address
* For example, aligned and coalesced memory load operations
require only a single 128-byte memory transaction to read the

data from device memory

memory address 128 160 192 224 256

2222222222222222222222222222222

INRERRERREEEREREERERERREREERREER
thread ID 0O 31

THUNDER Research Group §4£RT:¢
Seoul National University Y [pe.
Nerista Hs apa SRS

Lecture 23 - Optimizations for GPUs 18

Samsung DS
System Architect/Expert
2022

© Jaejin Lee

Aligned and Coalesced Memory Accesses (cont’'d)

* For example, misaligned and uncoalesced memory accesses
require as many as three 128-byte memory transactions to read
the data from device memory

« One starting at offset 0

« One starting at offset 128

« One starting at offset 256

memory address 128 160 192 224 256

I 2 2 22222222222222222222 9 2 2 s

HEEREEREEREERERRERRERREREEEEEEEn]
thread ID 0O 31

THUNDER Research Group §4£RT:¢
Seoul National University Y [pe.
Nerista Hs apa SRS

Lecture 23 - Optimizations for GPUs 19 l

Samsung DS
System Architect/Expert
2022

© Jagjin Lee

Bank Conflicts in Shared Memory

 To achieve high memory bandwidth, shared memory is divided

into 32 equally-sized memory modules, called banks
« Can be accessed simultaneously
* There are 32 banks because there are 32 threads in a warp
* Depending on the compute capability of a GPU, the addresses of

shared memory are mapped to different banks in different patterns
* |f a shared memory load or store operation issued by a warp does
not access more than one memory location per bank, the
operation can be serviced by one memory transaction
« Otherwise, the operation is serviced by multiple memory

transactions

THUNDER Research Group gé
Seoul Natio ﬁ%& Lecture 23 - Optimizations for GPUs 20
et

Samsung DS

System Architect/Expert

2022

© Jaejin Lee

Bank Conflicts in Shared Memory (cont’d)

% wn
©
= © 0
QW
= C QO
L c =
= + ©
Ex T
O (%)
O n O
e m —
= o v
— @© v
)) Y ©
O O CcC + U o
= = O v C
Y Y— O M 4+~ (@©
C c O n (-
(@) (@) O T wn .=
o o Z © 0 c
O O +
O O gt
- O
= 2 « O © 3
LE peaiyl |—> | |Eueq LE pealyl LE dueg LE peaiyl L€ dueg
0€ peaiyl |—> | O€ 3ueg 0€ peaJyl 0€ >ueg 0€ peaiyl 0€ dueg
6Z peaiyl |—> | 6g3ueg 62 peaiyl 62 dueg 6C peaiyl 62 ueg
8¢C peaiyl |—> | 8gueg 8¢ peaiyl 8C Jueg 8C pealyl 8¢ >ueg
LT pediyl |—> | [gZ3ueg LT pealyl £Zueg [Z pealyL L2 >ueg
9Z peaiyl |—> | 9gueg 9z peaiyl 9C dueg 92 pealyl 92 dueg
SC peaiyl |—> | Ggueg GZ peaiyl SZ dueg SC pealyl G Jueg
¥Z peaiyL |—> | pgiueg vz peaiyl ¥z dueg vz pesiyl vz dueg
€Z peaiyl |—> | ggueg €2 peaiyl €2 >ueg €2 pealyl €¢3uey
Zz peaiyl |—>» | gg>ueg czpeaiyl Tz dueg Tz pealyl Z¢ Jued
LZ peaiyl |—> | |g3ueg LZ peaiyl % LZ ueg LZ peaiyl LZ Jueg
0z peaiyl |—> | 0c 3ueg 0Z peaiyl 0Z >ueg 0Z peaiyL 0¢ Jueg
61 peaiyy |—> | 6| 3ueg 61 peaiyl 61 >ueg 6L peaiyl 61 >ueg
8l peaiyl |—> | 8| 3ueg 8l pesayl 8l dueg 8L peaiyl 8l >ueg
L1 peaiyl |—> | /1 >jueg L1 peay) L1 dueg Ll peayL L1 dueg
91 peaiy] |—> | 9] jueg 91 peaiyl 91 ueg 91 peayL 91 Jueg
Sl peaiyl |—> | G| djueg Gl peay| VA Gl dueg Sl peaiyl Sl dueg
Pl peaiyl |—> | pl 3ueg P1 peaiyl Pl ueg vl peaiyl vl dueg
€1 peaiyl |—> | €] 3ueg €1 pesiyl €1 dueg €1 peayl €| Jjueg
Zl peaiyl |—> | Z| 3ueg Zl peaayl Tl Yueg ZlL peayl ¢l Jueg
L1 peayl |—> | L1 djueg Ll peadyl L1 Jueg Ll peaiyl L1 Jueg
0l peaiyl |—> | Ol jueg 0l peaiyl 0L >ueg 0L peaiyl 0l >ueg
6 peaiy] |—> | gdueg 6 pealy | 6>ueg 6 pPealyl 6ueg
gpeaiyl |—> | gdjueg g peaJy| g ueg g peatyl g jueg
L peaiyl |—> | [dueg [peaiy] £ ueg [peaty] L>ueg
9 peaiyl |—> | 9>jueg 9 peay| 9>jueg 9 peayL 2elbed
G peaiy] |—> | gdueg G pealyl G dueg G peaiyl S Jueg
v peaiyl |—> | pojueg ¥ peayL ¥ jueg v peaiyl {75
€ peaiyl |—> | gijueg € peayl €>jueg €peayl €ueg
Zpeaiy)] |—> | Zdueg Z peaiy] VA Z>ueg Z peaiyl ¢ Jueg
| peaiy)l |—> | |>jueg | peaiyy | dueg L peaiyl Lolied
0 peaiyy |—> | 0>ueg 0 peaiyl |—> | 03ueg opeaiyL (@)L

Bank conflicts (if threads

access different addresses

within a bank)

21

%2
>
o
O

—

o
L

wn

C

o
=

@©
N

S
=

o3
O

1
™
~

o

—

>

2

O

@
—

THUNDER Research Group
Seoul National University

Kgohet

