from PIL import Image import torch.nn.functional as F import torch import sys import numpy as np imgSize = (1,2,640,959) def mask_to_image(mask: np.ndarray, mask_values): if isinstance(mask_values[0], list): out = np.zeros((mask.shape[-2], mask.shape[-1], len(mask_values[0])), dtype=np.uint8) elif mask_values == [0, 1]: out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=bool) else: out = np.zeros((mask.shape[-2], mask.shape[-1]), dtype=np.uint8) if mask.ndim == 3: mask = np.argmax(mask, axis=0) for i, v in enumerate(mask_values): out[mask == i] = v return Image.fromarray(out) if __name__=='__main__': state_dict = torch.load('MODEL.pth', map_location=torch.device('cpu') ) mask_values = state_dict.pop('mask_values', [0, 1]) img = np.fromfile(sys.argv[1], dtype=np.float32) img = torch.from_numpy(img).reshape(imgSize) img = F.interpolate(img, (640*2, 959*2), mode='bilinear') mask = img.argmax(dim=1) mask = mask[0].long().squeeze().numpy() result = mask_to_image(mask, mask_values) result.save(sys.argv[2])