import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import sys class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): x1 = self.double_conv[0](x) #print("param:", list(self.double_conv[0].parameters())[0][0][0][0]) #print("param:", list(self.double_conv[0].parameters())[0][63][2][2]) print("x1", x1[0][0][0][0]) return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): #print("param:", list(self.maxpool_conv[1].double_conv[4].state_dict()['bias'])) return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): #print("param:", list(self.conv.parameters())) #print("param:", list(self.conv.state_dict()['bias'])) return self.conv(x) class UNet(nn.Module): def __init__(self, n_channels, n_classes, bilinear=False): super(UNet, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = (DoubleConv(n_channels, 64)) self.down1 = (Down(64, 128)) self.down2 = (Down(128, 256)) self.down3 = (Down(256, 512)) factor = 2 if bilinear else 1 self.down4 = (Down(512, 1024 // factor)) self.up1 = (Up(1024, 512 // factor, bilinear)) self.up2 = (Up(512, 256 // factor, bilinear)) self.up3 = (Up(256, 128 // factor, bilinear)) self.up4 = (Up(128, 64, bilinear)) self.outc = (OutConv(64, n_classes)) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits def use_checkpointing(self): self.inc = torch.utils.checkpoint(self.inc) self.down1 = torch.utils.checkpoint(self.down1) self.down2 = torch.utils.checkpoint(self.down2) self.down3 = torch.utils.checkpoint(self.down3) self.down4 = torch.utils.checkpoint(self.down4) self.up1 = torch.utils.checkpoint(self.up1) self.up2 = torch.utils.checkpoint(self.up2) self.up3 = torch.utils.checkpoint(self.up3) self.up4 = torch.utils.checkpoint(self.up4) self.outc = torch.utils.checkpoint(self.outc) imgSize = (1,3,640,959) if __name__=='__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') inputData = np.fromfile(sys.argv[1], dtype=np.float32) inputTensor = torch.from_numpy(inputData).to(device).reshape(imgSize) print("input data size : ", inputTensor.shape) model = UNet(3,2,False).to(device).eval() state_dict = torch.load('MODEL.pth', map_location=device) mask_values = state_dict.pop('mask_values', [0, 1]) model.load_state_dict(state_dict) print("input : {0:.6f}".format(inputTensor[0][2][639][958])) outputData = model(inputTensor) with open(sys.argv[2], 'wb') as f: f.write(outputData.detach().to('cpu').numpy().tobytes()) print("output data size : ", outputData.shape)