#include "mat_mul.h" #include "util.h" #include #include #include #include static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static int count; static int min(int x, int y) { return x < y ? x : y; } #define ITILESIZE (32) #define JTILESIZE (1024) #define KTILESIZE (1024) static void* mat_mul_op(){ int tid, is, ie; #pragma omp parallel num_threads(num_threads) private(tid, is, ie) { tid = omp_get_thread_num();; is = count / num_threads * tid + min(tid, count % num_threads); ie = count / num_threads * (tid + 1) + min(tid + 1, count % num_threads); for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int k = kk; k < min(K, kk + KTILESIZE); k++) { for (int i = ii; i < min(ie, ii + ITILESIZE); i++) { float ar = A[i * K + k]; for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } return NULL; } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; MPI_Status status; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes // FIXME: for now, only root process runs the matrix multiplication. int offset = (M / mpi_world_size) + 1; int is = mpi_rank * offset; int ie = min(is + offset, M); count = ie - is; if (mpi_rank == 0) { int s, e, c; for (int i = 1; i < mpi_world_size; i++) { s = i * offset; e = min(s + offset, M); c = e - s; if (c > 0) { MPI_Send(&A[s * K + 0], c * K, MPI_FLOAT, i, i, MPI_COMM_WORLD); MPI_Send(B, K * N, MPI_FLOAT, i, i, MPI_COMM_WORLD); MPI_Send(C, c * N, MPI_FLOAT, i, i, MPI_COMM_WORLD); } } mat_mul_op(); for (int i = 1; i < mpi_world_size; i++) { s = i * offset; e = min(s + offset, M); c = e - s; if (c > 0) { MPI_Recv(&C[s * N + 0], c * N, MPI_FLOAT, i, 0, MPI_COMM_WORLD, &status); } } } else { if (count > 0) { alloc_mat(&A, count, K); alloc_mat(&B, K, N); alloc_mat(&C, count, N); MPI_Recv(A, count * K, MPI_FLOAT, 0, mpi_rank, MPI_COMM_WORLD, &status); MPI_Recv(B, K * N, MPI_FLOAT, 0, mpi_rank, MPI_COMM_WORLD, &status); MPI_Recv(C, count * N, MPI_FLOAT, 0, mpi_rank, MPI_COMM_WORLD, &status); mat_mul_op(); MPI_Send(C, count * N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD); } } }