#include "mat_mul.h" #include #include #include #include "util.h" static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static int min(int x, int y) { return x < y ? x : y; } MPI_Request request; MPI_Status status; #define ITILESIZE (32) #define JTILESIZE (1024) #define KTILESIZE (1024) //static void mat_mul_omp(int rows) { static void mat_mul_omp() { // // TODO: parallelize & optimize matrix multiplication // Use num_threads per node # pragma omp parallel for num_threads(num_threads) for (int ii = 0; ii < M; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int k = kk; k < min(K, kk + KTILESIZE); k++) { for (int i = ii; i < min(M, ii + ITILESIZE); i++) { float ar = A[i * K + k]; for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes // FIXME: for now, only root process runs the matrix multiplication. int ave_row = M / mpi_world_size; int extra_row = M % mpi_world_size; int offset; /* send matrix data to the worker tasks */ if (mpi_rank == 0) { offset = ave_row + extra_row; M = offset; if(ave_row) { for (int node=1; node < mpi_world_size; node++) { MPI_Isend ( &offset, 1, MPI_INT, node, 1, MPI_COMM_WORLD, &request); MPI_Isend ( &A[offset * K], ave_row*K, MPI_FLOAT, node, 1, MPI_COMM_WORLD, &request); MPI_Isend ( B, K*N, MPI_FLOAT, node, 1, MPI_COMM_WORLD, &request); offset = offset + ave_row; } } mat_mul_omp(); } else { /* Return the result to mater node */ if(ave_row) { alloc_mat ( &A, ave_row, K); alloc_mat ( &B, K, N); alloc_mat ( &C, ave_row, N); zero_mat ( C, ave_row, N); MPI_Recv ( &offset, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status); MPI_Recv ( A, ave_row*K, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status); MPI_Recv ( B, K*N, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status); M = ave_row; mat_mul_omp(); MPI_Isend ( &offset, 1, MPI_INT, 0, 2, MPI_COMM_WORLD, &request); MPI_Isend ( C, ave_row*N, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &request); } } /* wait for results from all worker tasks */ if (mpi_rank == 0) { if(ave_row) { for (int i=1; i < mpi_world_size; i++) { MPI_Recv ( &offset, 1, MPI_INT, i, 2, MPI_COMM_WORLD, &status); MPI_Recv ( &C[offset * N],ave_row*N, MPI_FLOAT, i, 2, MPI_COMM_WORLD, &status); } } } }