#include "mat_mul.h" #include "util.h" #include #include #include #include static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; static int min(int x, int y) { return x < y ? x : y; } #define ITILESIZE (32) #define JTILESIZE (1024) #define KTILESIZE (1024) static void mat_mul_thread(int i_start, int i_end, int M_sub, int idx) { int is, ie; is = i_start + M_sub / num_threads * idx + min(idx, M_sub % num_threads); ie = i_start + M_sub / num_threads * (idx + 1) + min(idx + 1, M_sub % num_threads); for (int kk = 0; kk < K; kk += KTILESIZE) { for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { int k_cond = min(kk + KTILESIZE, K); for (int k = kk; k < k_cond; k++) { int i_cond = min(ii + ITILESIZE, ie); for (int i = ii; i < i_cond; i++) { float ar = A[i * K + k]; int j_cond = min(jj + JTILESIZE, N); for (int j = jj; j < j_cond; j+=1) { C[i * N + j] += ar * B[k * N + j]; } } } } } } } static void mat_mul_thread4(int i_start, int i_end, int M_sub, int idx) { int is, ie; is = i_start + M_sub / num_threads * idx + min(idx, M_sub % num_threads); ie = i_start + M_sub / num_threads * (idx + 1) + min(idx + 1, M_sub % num_threads); for (int kk = 0; kk < K; kk += KTILESIZE) { for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { int k_cond = min(kk + KTILESIZE, K); for (int k = kk; k < k_cond; k++) { int i_cond = min(ii + ITILESIZE, ie); for (int i = ii; i < i_cond; i++) { float ar = A[i * K + k]; int j_cond = min(jj + JTILESIZE, N); for (int j = jj; j < j_cond; j+=4) { C[i * N + j] += ar * B[k * N + j]; C[i * N + j+1] += ar * B[k * N + j+1]; C[i * N + j+2] += ar * B[k * N + j+2]; C[i * N + j+3] += ar * B[k * N + j+3]; } } } } } } } static void mat_mul_thread16(int i_start, int i_end, int M_sub, int idx) { int is, ie; is = i_start + M_sub / num_threads * idx + min(idx, M_sub % num_threads); ie = i_start + M_sub / num_threads * (idx + 1) + min(idx + 1, M_sub % num_threads); for (int kk = 0; kk < K; kk += KTILESIZE) { for (int ii = is; ii < ie; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { int k_cond = min(kk + KTILESIZE, K); for (int k = kk; k < k_cond; k++) { int i_cond = min(ii + ITILESIZE, ie); for (int i = ii; i < i_cond; i++) { float ar = A[i * K + k]; int j_cond = min(jj + JTILESIZE, N); for (int j = jj; j < j_cond; j+=16) { C[i * N + j] += ar * B[k * N + j]; C[i * N + j+1] += ar * B[k * N + j+1]; C[i * N + j+2] += ar * B[k * N + j+2]; C[i * N + j+3] += ar * B[k * N + j+3]; C[i * N + j+4] += ar * B[k * N + j+4]; C[i * N + j+5] += ar * B[k * N + j+5]; C[i * N + j+6] += ar * B[k * N + j+6]; C[i * N + j+7] += ar * B[k * N + j+7]; C[i * N + j+8] += ar * B[k * N + j+8]; C[i * N + j+9] += ar * B[k * N + j+9]; C[i * N + j+10] += ar * B[k * N + j+10]; C[i * N + j+11] += ar * B[k * N + j+11]; C[i * N + j+12] += ar * B[k * N + j+12]; C[i * N + j+13] += ar * B[k * N + j+13]; C[i * N + j+14] += ar * B[k * N + j+14]; C[i * N + j+15] += ar * B[k * N + j+15]; } } } } } } } static void mat_mul_omp() { // TODO: parallelize & optimize matrix multiplication // Use num_threads per node int i_start, i_end, M_sub; MPI_Status status; i_start = (M / mpi_world_size) * mpi_rank + min(mpi_rank, M % mpi_world_size); i_end = (M / mpi_world_size) * (mpi_rank + 1) + min(mpi_rank + 1, M % mpi_world_size); M_sub = i_end - i_start; if(mpi_rank == 0) { for(int rank_idx = 1; rank_idx < mpi_world_size; rank_idx++) { int rank_start = (M / mpi_world_size) * rank_idx + min(rank_idx, M % mpi_world_size); int rank_end = (M / mpi_world_size) * (rank_idx + 1) + min(rank_idx + 1, M % mpi_world_size); int rank_sub = rank_end - rank_start; MPI_Send(A + rank_start*K, rank_sub*K, MPI_FLOAT, rank_idx, 1001, MPI_COMM_WORLD); } } else { MPI_Recv(A + i_start*K, M_sub*K, MPI_FLOAT, 0, 1001, MPI_COMM_WORLD, &status); } if(N%16==0) { #pragma omp parallel for for (long i = 0; i < omp_get_num_threads(); ++i) { mat_mul_thread16(i_start, i_end, M_sub, i); } } else if(N%4==0) { #pragma omp parallel for for (long i = 0; i < omp_get_num_threads(); ++i) { mat_mul_thread4(i_start, i_end, M_sub, i); } } else { #pragma omp parallel for for (long i = 0; i < omp_get_num_threads(); ++i) { mat_mul_thread(i_start, i_end, M_sub, i); } } if(mpi_rank == 0) { for(int rank_idx = 1; rank_idx < mpi_world_size; rank_idx++) { int rank_start = (M / mpi_world_size) * rank_idx + min(rank_idx, M % mpi_world_size); int rank_end = (M / mpi_world_size) * (rank_idx + 1) + min(rank_idx + 1, M % mpi_world_size); int rank_sub = rank_end - rank_start; MPI_Recv(C + rank_start*N, rank_sub*N, MPI_FLOAT, rank_idx, 1001, MPI_COMM_WORLD, &status); } } else { MPI_Send(C + i_start*N, M_sub*N, MPI_FLOAT, 0, 1001, MPI_COMM_WORLD); } } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { A = _A, B = _B, C = _C; M = _M, N = _N, K = _K; num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; // TODO: parallelize & optimize matrix multiplication on multi-node // You must allocate & initialize A, B, C for non-root processes if(mpi_rank != 0) { alloc_mat(&A, M, K); alloc_mat(&B, K, N); alloc_mat(&C, M, N); } MPI_Bcast(B, K*N, MPI_FLOAT, 0, MPI_COMM_WORLD); omp_set_num_threads(num_threads); // FIXME: for now, only root process runs the matrix multiplication. mat_mul_omp(); }