#include "mat_mul.h" #include "util.h" #include #include #include static float *A, *B, *C; static int M, N, K; static int num_threads; static int mpi_rank, mpi_world_size; #define min(x, y) (((x) > (y)) ? (y) : (x)) #define ITILESIZE (32) #define JTILESIZE (1024) #define KTILESIZE (1024) //#define ITILESIZE (16) //#define JTILESIZE (512) //#define KTILESIZE (512) static void mat_mul_omp(int limit) { //int tid = (long)data; //int is = M / num_threads * tid + min(tid, M % num_threads); //int ie = M / num_threads * (tid + 1) + min(tid + 1, M % num_threads); //int is = M / mpi_world_size * mpi_rank + min(mpi_rank, M % mpi_world_size); //int ie = M / mpi_world_size * (mpi_rank + 1) + min(mpi_rank + 1, M % mpi_world_size); // printf("[mat_mul_omp] _mpi_rank : %d / is : %d / ie : %d\n", mpi_rank, is, ie); //printf("[mat_mul_omp] %d %d\n", mpi_rank, limit); #pragma omp parallel for num_threads(num_threads) for (int ii = 0; ii < limit; ii += ITILESIZE) { for (int jj = 0; jj < N; jj += JTILESIZE) { for (int kk = 0; kk < K; kk += KTILESIZE) { for (int k = kk; k < min(K, kk + KTILESIZE); k++) { for (int i = ii; i < min(limit, ii + ITILESIZE); i++) { float ar = A[i * K + k]; for (int j = jj; j < min(N, jj + JTILESIZE); j++) { C[i * N + j] += ar * B[k * N + j]; } } } } } } //for(int i = 0; i < limit*K; i++){ // printf("A %d %d: %lf\n", mpi_rank, i, A[i]); //} //for(int i = 0; i < limit*N; i++){ // printf("C %d %d : %lf\n", mpi_rank, i, C[i]); //} } void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K, int _num_threads, int _mpi_rank, int _mpi_world_size) { num_threads = _num_threads, mpi_rank = _mpi_rank, mpi_world_size = _mpi_world_size; M = _M, N = _N, K = _K; MPI_Status status; int is[mpi_world_size]; int ie[mpi_world_size]; MPI_Request a_req; MPI_Request b_req; if(mpi_rank == 0){ A = _A, B = _B, C = _C; for(int i = 1; i < mpi_world_size; i++){ is[i] = M / mpi_world_size * i + min(i, M % mpi_world_size); ie[i] = M / mpi_world_size * (i + 1) + min(i + 1, M % mpi_world_size); //MPI_Send(A + is[i]*K, (ie[i] - is[i])*K , MPI_FLOAT, i, 0, MPI_COMM_WORLD); //MPI_Send(B , K*N , MPI_FLOAT, i, 1, MPI_COMM_WORLD); MPI_Isend(A + is[i]*K, (ie[i] - is[i])*K , MPI_FLOAT, i, 0, MPI_COMM_WORLD, &a_req); MPI_Isend(B , K*N , MPI_FLOAT, i, 1, MPI_COMM_WORLD, &b_req); //printf("mpi send AB %d\n", i); } is[0] = 0; ie[0] = M / mpi_world_size * 1 + min(1, M % mpi_world_size); } else{ is[0] = M / mpi_world_size * mpi_rank + min(mpi_rank, M % mpi_world_size); ie[0] = M / mpi_world_size * (mpi_rank + 1) + min(mpi_rank + 1, M % mpi_world_size); //printf("malloc size %d : %d\n", mpi_rank, ie - is); A = (float*) aligned_alloc(32, sizeof(float)*(ie[0] - is[0])*K); B = (float*) aligned_alloc(32, sizeof(float)*K*N); C = (float*) aligned_alloc(32, sizeof(float)*(ie[0] - is[0])*N); //zero_mat(C, (ie[0] - is[0]), N); MPI_Recv(A, (ie[0] - is[0])*K, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(B, K*N, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status); //printf("mpi receive AB %d\n", mpi_rank); } mat_mul_omp(ie[0] - is[0]); // A : M*K // B : K*N // C : M*N //for(int i = 0; i < M*N; i++){ // printf("A %d %d: %lf\n", mpi_rank, i, A[i]); //} //for(int i = 0; i < K*N; i++){ // printf("B %d %d : %lf\n", mpi_rank, i, B[i]); //} //for(int i = 0; i < M*N; i++){ // printf("C %d %d : %lf\n", mpi_rank, i, C[i]); //} if(mpi_rank == 0){ for(int i = 1; i < mpi_world_size; i++){ MPI_Recv(C + is[i]*N, (ie[i] - is[i])*N, MPI_FLOAT, i, 2, MPI_COMM_WORLD, &status); //printf("mpi receive C %d\n", i); } } else{ //MPI_Send(C, (ie[0] - is[0])*N, MPI_FLOAT, 0, 2, MPI_COMM_WORLD); MPI_Isend(C, (ie[0] - is[0])*N, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &a_req); //printf("mpi send C %d\n", mpi_rank); free(A); free(B); free(C); } }