#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; #define BLOCK_SIZE 16 __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; // Index of the first sub-matrix of A processed by the block int aBegin = K * BLOCK_SIZE * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + K - 1; // Step size used to iterate through the sub-matrices of A int aStep = BLOCK_SIZE; // Index of the first sub-matrix of B processed by the block int bBegin = BLOCK_SIZE * bx; // Step size used to iterate through the sub-matrices of B int bStep = BLOCK_SIZE * N; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix As[ty][tx] = A[a + K * ty + tx]; Bs[ty][tx] = B[b + N * ty + tx]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix #pragma unroll for (int k = 0; k < BLOCK_SIZE; ++k) { Csub += As[ty][k] * Bs[k][tx]; } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = N * BLOCK_SIZE * by + BLOCK_SIZE * bx; C[c + N * ty + tx] = Csub; } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { int rounded_N = (N + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE; int rounded_M = ((Mend[i] - Mbegin[i]) + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE; dim3 blockDim(BLOCK_SIZE, BLOCK_SIZE); dim3 gridDim(rounded_N/BLOCK_SIZE, rounded_M/BLOCK_SIZE); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], Mend[i] - Mbegin[i], rounded_N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU int rounded_N = (N + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE; for (int i = 0; i < num_devices; i++) { int rounded_M = ((Mend[i] - Mbegin[i]) + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE; CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], rounded_M * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * rounded_N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], rounded_M * rounded_N * sizeof(float)) ); CUDA_CALL( cudaMemset(a_d[i], 0, rounded_M * K * sizeof(float)) ); CUDA_CALL( cudaMemset(b_d[i], 0, K * rounded_N * sizeof(float)) ); CUDA_CALL( cudaMemset(c_d[i], 0, rounded_M * rounded_N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); for (int j = 0; j < K; j++) { CUDA_CALL( cudaMemcpy(b_d[i] + j * rounded_N, B + j * N, N * sizeof(float), cudaMemcpyHostToDevice) ); } } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. int rounded_N = (N + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE; // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); for (int j = 0; j < (Mend[i] - Mbegin[i]); j++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N + j * N, c_d[i] + j * rounded_N, N * sizeof(float), cudaMemcpyDeviceToHost) ); } } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } }