#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 //int num_devices = 0; // ORG int num_devices = 4; // DEBUG /* // ORIGINAL VERSION __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { int i = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.y * blockIdx.y + threadIdx.y; if (i >= M || j >= N) return; C[i * N + j] = 0; for (int k = 0; k < K; ++k) { C[i * N + j] += A[i * K + k] * B[k * N + j]; } } */ // 41490 GFLOPS: TS(64), WPT(8) #define TS 64 #define WPT 8 // 35000 GFLOPS: TS(72), WPT(8) //#define TS 72 //#define WPT 8 // 30490 GFLOPS: TS(64), WPT(16) //#define TS 64 //#define WPT 16 // 30000 GFLOPS: TS(64), WPT(4) //#define TS 64 //#define WPT 4 // 28000 GFLOPS: TS(72), WPT(16) //#define TS 72 //#define WPT 16 // 17000 GFLOPS: TS(16), WPT(8) //#define TS 16 //#define WPT 8 #define RTS TS/WPT // VERSION: PARTITIONED FOR M __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; int row = threadIdx.y; int col = threadIdx.x; //int global_row = (blockDim.y*WPT)*blockIdx.y + threadIdx.y; //int global_col = (blockDim.x)*blockIdx.x + threadIdx.x; int global_row = (blockDim.y*WPT)*by + ty; int global_col = (blockDim.x)*bx + tx; __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; float intermediate_val[WPT]; // printf("DEBUG: (bx,by) = (%d, %d), (tx,ty)=(%d, %d), (bsx,bsy)=(%d,%d), (global_row, global_col)= (%d,%d) \n",bx, by, tx,ty, blockDim.x, blockDim.y, global_row, global_col); for(int w=0; w < WPT; w++) { intermediate_val[w] = 0.0f; } const int num_tiles = (K % TS) ? K/TS +1 : K/TS; // aligned for TS(tile size) for(int t=0; t < num_tiles; t++) { for(int w=0; w < WPT; w++) { const int t_row = TS * t + row; const int t_col = TS * t + col; // for zero padding for aligned area if( (global_row+w*RTS >= M) || (t_col >= K) ) Asub[row+w*RTS][col] = 0.0f; else Asub[row+w*RTS][col] = A[(global_row + w*RTS) * K + t_col]; // for zero padding for aligned area if( (t_row + w*RTS >= K) || (global_col >= N) ) Bsub[row+w*RTS][col] = 0.0f; else Bsub[row+w*RTS][col] = B[(t_row + w*RTS) * N + global_col]; } __syncthreads(); for(int k=0; k= M) || (global_col >= N) ) continue; else C[(global_row + w*RTS)*N + global_col] = intermediate_val[w]; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; //static int Mi[MAX_NUM_GPU]; static int Msz; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { int bsx, bsy; bsx = TS; bsy = TS/WPT; dim3 blockDim(bsx, bsy, 1); Msz = (Mend[i] - Mbegin[i]); int gx, gy; gx = N; gy = (Msz+WPT-1)/WPT; // aligned for block gx = (gx + bsx -1)/bsx; gy = (gy + bsy -1)/bsy; dim3 gridDim(gx, gy, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], Msz, N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }