#include "mat_mul.h" #include #include #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; #define TS 32 #define WPT 16 #define RTS (TS / WPT) __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { int row = threadIdx.x; int col = threadIdx.y; int global_row = WPT * blockDim.x * blockIdx.x + row; // row index of C int global_col = blockDim.y * blockIdx.y + col; // column index of C __shared__ float A_SUB[TS][TS]; __shared__ float B_SUB[TS][TS]; float iv[WPT]; for (int w = 0; w < WPT; w++) { iv[w] = 0.0f; } int _K = (K + TS - 1) / TS * TS; for (int t = 0; t < _K / TS; t++) { for (int w = 0; w < WPT; w++) { const int t_row = TS * t + row; const int t_col = TS * t + col; const int indexA = (global_row + w*RTS) * K + t_col; const int indexB = (t_row + w*RTS) * N + global_col; A_SUB[row + w*RTS][col] = (global_row + w*RTS < M && t_col < K) ? A[indexA] : 0.0f; B_SUB[row + w*RTS][col] = (t_row + w*RTS < K && global_col < N) ? B[indexB] : 0.0f; } __syncthreads(); for (int k = 0; k < TS; k++) { for (int w = 0; w < WPT; w++) { iv[w] += A_SUB[row + w * RTS][k] * B_SUB[k][col]; } } __syncthreads(); } if (global_row >= M || global_col >= N) return; // boundary check for (int w = 0; w < WPT; w++) { C[(global_row + w * RTS)* N + global_col] = iv[w]; } } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { int MTS = ((TS + WPT - 1) / WPT * WPT) / WPT; // modified TS; int MGWS = ((Mend[i] - Mbegin[i] + WPT - 1) / WPT * WPT) / WPT; size_t gws[2] = {(size_t)MGWS, (size_t)N}, lws[2] = {(size_t)MTS, (size_t)TS}; for (int j = 0; j < 2; ++j) { gws[j] = (gws[j] + lws[j] - 1) / lws[j] * lws[j]; } dim3 blockDim(lws[0], lws[1], 1); dim3 gridDim(gws[0]/lws[0], gws[1]/lws[1], 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], M, N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU for (int i = 0; i < num_devices; i++) { Mbegin[i] = (M / num_devices) * i; Mend[i] = (M / num_devices) * (i + 1); } Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, (Mend[i] - Mbegin[i]) * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float), cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaDeviceSynchronize() ); } }