#include "mat_mul.h" #include #include #define TS 32 #define WPT 16 #define RTS (TS / WPT) #define CUDA_CALL(f) \ { \ cudaError_t err = (f); \ if (err != cudaSuccess) { \ fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \ err, cudaGetErrorString(err)); \ exit(1); \ } \ } #define MAX_NUM_GPU 4 int num_devices = 0; __global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) { // Thread identifiers const int row = threadIdx.x; // Local row ID (max: TS) const int col = threadIdx.y; // Local col ID (max: TS/WPT == RTS) const int globalRow = (blockDim.x * WPT) * blockIdx.x + row; // Row ID of C (0..M) const int globalCol = blockDim.y * blockIdx.y + col; // Col ID of C (0..N) // Local memory to fit a tile of TS*TS elements of A and B __shared__ float Asub[TS][TS]; __shared__ float Bsub[TS][TS]; // Initialise the accumulation registers float tempVal[WPT]; for (int w=0; w= M || j >= N) // return; // //C[i * N + j] = 0; //for (int k = 0; k < K; ++k) { // C[i * N + j] += A[i * K + k] * B[k * N + j]; //} } // Array of device (GPU) pointers static float *a_d[MAX_NUM_GPU]; static float *b_d[MAX_NUM_GPU]; static float *c_d[MAX_NUM_GPU]; static int M, N, K; static int M_str[MAX_NUM_GPU], M_siz[MAX_NUM_GPU]; //static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU]; void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) { // Launch kernel on every GPU for (int i = 0; i < num_devices; i++) { dim3 blockDim(TS/WPT, TS, 1); dim3 gridDim( (M_siz[i] + TS - 1) / TS, (N + TS - 1) / TS, 1); //dim3 gridDim( (Mend[i] - Mbegin[i] +TS - 1) / TS, (N + TS - 1) / TS, 1); CUDA_CALL( cudaSetDevice(i) ); sgemm<<>>(a_d[i], b_d[i], c_d[i], M_siz[i], N, K); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) { M = _M, N = _N, K = _K; CUDA_CALL( cudaGetDeviceCount(&num_devices) ); printf("Using %d devices\n", num_devices); for (int i = 0; i < num_devices; i++) { cudaDeviceProp prop; CUDA_CALL( cudaGetDeviceProperties(&prop, i) ); // Try printing more detailed information here printf("[GPU %d] %s\n", i, prop.name); } if (num_devices <= 0) { printf("No CUDA device found. Aborting\n"); exit(1); } // Setup problem size for each GPU M_str [0] = 0 ; M_siz [0] = M / num_devices ; int mod = M % num_devices ; if (mod != 0) M_siz[0] = M_siz[0] + mod ; // Assign Remained Device for (int i = 1 ; i < num_devices ; i++){ M_str[i] = M_str[i - 1] + M_siz[i - 1]; if (i == num_devices - 1) { // Last Device M_siz[i] = M - M_str[i] ; } else { M_siz[i] = M / num_devices ; } } //for (int i = 0; i < num_devices; i++) { // Mbegin[i] = (M / num_devices) * i; // Mend[i] = (M / num_devices) * (i + 1); //} //Mend[num_devices - 1] = M; // Allocate device memory for each GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaSetDevice(i) ); CUDA_CALL( cudaMalloc(&a_d[i], M_siz[i] * K * sizeof(float)) ); CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); CUDA_CALL( cudaMalloc(&c_d[i], M_siz[i] * N * sizeof(float)) ); //CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) ); //CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) ); //CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) ); } // Upload A and B matrix to every GPU for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(a_d[i], &A[M_str[i] * K], M_siz[i] * K * sizeof(float), cudaMemcpyHostToDevice) ); CUDA_CALL( cudaMemcpy(b_d[i], B , K * N * sizeof(float), cudaMemcpyHostToDevice) ); //CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K, // (Mend[i] - Mbegin[i]) * K * sizeof(float), // cudaMemcpyHostToDevice) ); //CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } } void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) { // Do any post-matmul cleanup work here. // Download C matrix from GPUs for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaMemcpy(&C[M_str[i] * N], c_d[i], M_siz[i] * N * sizeof(float), cudaMemcpyDeviceToHost) ); //CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i], // (Mend[i] - Mbegin[i]) * N * sizeof(float), // cudaMemcpyDeviceToHost) ); } // DO NOT REMOVE; NEEDED FOR TIME MEASURE for (int i = 0; i < num_devices; i++) { CUDA_CALL( cudaDeviceSynchronize() ); } }