chundoong-lab-ta/SamsungDS22/submissions/HW4/dk.han/mat_mul.cpp

160 lines
3.5 KiB
C++

#include "mat_mul.h"
#include "util.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
#define ITILESIZE (32)
#define JTILESIZE (2048)
#define KTILESIZE (32)
#define MASTER (0)
#define FROM_MASTER (1)
#define FROM_WORKER (2)
static int min(int x, int y) {
return x < y ? x : y;
}
/*
static void mat_mul_omp() {
// TODO: parallelize & optimize matrix multiplication
// Use num_threads per node
#pragma omp parallel for
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
}
}
*/
static void mat_mul_omp(int rows) {
omp_set_num_threads(num_threads);
#pragma omp parallel for
for (int ii = 0; ii < rows; ii += ITILESIZE) {
for (int jj = 0; jj < N; jj += JTILESIZE) {
for (int kk = 0; kk < K; kk += KTILESIZE) {
for (int k = kk; k < min(K, kk + KTILESIZE); k++) {
for (int i = ii; i < min(rows, ii + ITILESIZE); i++) {
float ar = A[i * K + k];
for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) {
C[i * N + j] += ar * B[k * N + j];
}
}
}
}
}
}
// return NULL;
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
int row_size, rows;
int start, end, offset;
MPI_Status status;
MPI_Request request;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
// FIXME: for now, only root process runs the matrix multiplication.
if (mpi_rank ==0) {
row_size = M / mpi_world_size;
for (int node=1; node<mpi_world_size; node++) {
start = offset = node * row_size;
end = (node == mpi_world_size-1) ? M : (node+1)*row_size;
rows = end - start;
//Non-blocking
//
MPI_Isend(&offset, 1, MPI_INT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
MPI_Isend(&rows, 1, MPI_INT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
MPI_Isend(&A[offset*K], rows*K, MPI_FLOAT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
MPI_Isend(B, K*N, MPI_FLOAT, node, FROM_MASTER, MPI_COMM_WORLD, &request);
}
rows = row_size;
mat_mul_omp(rows);
for (int node=1; node<mpi_world_size; node++) {
MPI_Recv(&offset, 1, MPI_INT, node, FROM_WORKER, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, node, FROM_WORKER, MPI_COMM_WORLD, &status);
MPI_Recv(&C[offset*N], rows*N, MPI_FLOAT, node, FROM_WORKER, MPI_COMM_WORLD, &status);
}
}
else {
alloc_mat(&A, M, K);
alloc_mat(&B, K, N);
alloc_mat(&C, M, N);
zero_mat(C, M, N);
/* Receive */
MPI_Recv(&offset, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
MPI_Recv(A, rows*K, MPI_FLOAT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
MPI_Recv(B, K*N, MPI_INT, MASTER, FROM_MASTER, MPI_COMM_WORLD, &status);
mat_mul_omp(rows);
// Send
//
MPI_Isend(&offset, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request);
MPI_Isend(&rows, 1, MPI_INT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request);
MPI_Isend(C, rows*N, MPI_FLOAT, MASTER, FROM_WORKER, MPI_COMM_WORLD, &request);
}
}