234 lines
7.4 KiB
C++
234 lines
7.4 KiB
C++
#include "mat_mul.h"
|
|
|
|
#include <stdio.h>
|
|
#include <CL/cl.h>
|
|
|
|
#define NUM_GPUS 4
|
|
#define TILE_SIZE 32
|
|
#define WORK_PER_THREAD 8
|
|
#define VECTOR_WIDTH 8
|
|
#define REG_TILE_SIZE (TILE_SIZE / WORK_PER_THREAD)
|
|
#define min(A, B) (((A)>(B))?(B):(A))
|
|
|
|
#define CHECK_ERROR(err) \
|
|
if (err != CL_SUCCESS) \
|
|
{ \
|
|
printf("[%s:%d] OpenCL error %d\n", __FILE__, __LINE__, err); \
|
|
exit(EXIT_FAILURE); \
|
|
}
|
|
|
|
static cl_int err;
|
|
static cl_platform_id platform;
|
|
static cl_device_id device[NUM_GPUS];
|
|
static cl_uint device_cnt;
|
|
static cl_context context;
|
|
static cl_command_queue queue[NUM_GPUS];
|
|
static cl_program program;
|
|
static cl_kernel kernel[NUM_GPUS];
|
|
static cl_mem a_d[NUM_GPUS], b_d[NUM_GPUS], c_d[NUM_GPUS];
|
|
|
|
static float *A, *B, *C;
|
|
static int M, N, K;
|
|
static int row_start[NUM_GPUS];
|
|
static int row_end[NUM_GPUS];
|
|
static int num_rows[NUM_GPUS];
|
|
|
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K)
|
|
{
|
|
A = _A, B = _B, C = _C;
|
|
M = _M, N = _N, K = _K;
|
|
|
|
// Setup kernel arguments
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < NUM_GPUS; i++)
|
|
{
|
|
err = clSetKernelArg(kernel[i], 0, sizeof(cl_mem), &a_d[i]);
|
|
CHECK_ERROR(err);
|
|
err = clSetKernelArg(kernel[i], 1, sizeof(cl_mem), &b_d[i]);
|
|
CHECK_ERROR(err);
|
|
err = clSetKernelArg(kernel[i], 2, sizeof(cl_mem), &c_d[i]);
|
|
CHECK_ERROR(err);
|
|
err = clSetKernelArg(kernel[i], 3, sizeof(int), &num_rows[i]);
|
|
CHECK_ERROR(err);
|
|
err = clSetKernelArg(kernel[i], 4, sizeof(int), &N);
|
|
CHECK_ERROR(err);
|
|
err = clSetKernelArg(kernel[i], 5, sizeof(int), &K);
|
|
CHECK_ERROR(err);
|
|
|
|
// Setup global work size and local work size
|
|
// For kernel.cl
|
|
size_t gws[2] = { (size_t)((num_rows[i] + WORK_PER_THREAD - 1) / WORK_PER_THREAD), (size_t)N };
|
|
size_t lws[2] = { (size_t)(TILE_SIZE / WORK_PER_THREAD), (size_t)(TILE_SIZE) };
|
|
// For kernel2.cl
|
|
// size_t gws[2] = { (size_t)(num_rows[i]), (size_t)(N / VECTOR_WIDTH) };
|
|
// size_t lws[2] = { (size_t)(TILE_SIZE), (size_t)(TILE_SIZE / VECTOR_WIDTH) };
|
|
for (int i = 0; i < 2; ++i)
|
|
{
|
|
// By OpenCL spec, global work size should be MULTIPLE of local work size
|
|
// Formula below achieve it
|
|
// e.g., gws = 25, lws = 16, then (25 + 16 - 1) / 16 * 16 = 40 / 16 * 16 = 2 * 16 = 32
|
|
gws[i] = (gws[i] + lws[i] - 1) / lws[i] * lws[i];
|
|
}
|
|
|
|
// printf("#%d gws = (%d, %d), lws = (%d, %d)\n", i, (int)gws[0], (int)gws[1], (int)lws[0], (int)lws[1]);
|
|
|
|
// Run kernel
|
|
err = clEnqueueNDRangeKernel(queue[i], kernel[i], 2, NULL, gws, lws, 0, NULL, NULL);
|
|
CHECK_ERROR(err);
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < NUM_GPUS; i++)
|
|
{
|
|
err = clFinish(queue[i]);
|
|
CHECK_ERROR(err);
|
|
}
|
|
}
|
|
|
|
static void print_platform_info(cl_platform_id platform)
|
|
{
|
|
size_t sz;
|
|
char *buf;
|
|
CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, 0, NULL, &sz));
|
|
buf = (char *)malloc(sz);
|
|
CHECK_ERROR(clGetPlatformInfo(platform, CL_PLATFORM_NAME, sz, buf, NULL));
|
|
printf("Detected OpenCL platform: %s\n", buf);
|
|
free(buf);
|
|
}
|
|
|
|
static void print_device_info(cl_device_id device)
|
|
{
|
|
size_t sz;
|
|
char *buf;
|
|
CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, 0, NULL, &sz));
|
|
buf = (char *)malloc(sz);
|
|
CHECK_ERROR(clGetDeviceInfo(device, CL_DEVICE_NAME, sz, buf, NULL));
|
|
printf("Detected OpenCL device: %s\n", buf);
|
|
free(buf);
|
|
}
|
|
|
|
static cl_program create_and_build_program_with_source(cl_context context, cl_device_id *device, const char *file_name)
|
|
{
|
|
FILE *file = fopen(file_name, "rb");
|
|
if (file == NULL)
|
|
{
|
|
printf("Failed to open %s\n", file_name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
fseek(file, 0, SEEK_END);
|
|
size_t source_size = ftell(file);
|
|
rewind(file);
|
|
char *source_code = (char *)malloc(source_size + 1);
|
|
size_t ntotal = 0;
|
|
while (ntotal < source_size)
|
|
{
|
|
int nread = fread(source_code, sizeof(char), source_size, file);
|
|
ntotal += nread;
|
|
}
|
|
source_code[source_size] = '\0';
|
|
fclose(file);
|
|
cl_program program = clCreateProgramWithSource(context, 1, (const char **)&source_code, &source_size, &err);
|
|
CHECK_ERROR(err);
|
|
free(source_code);
|
|
err = clBuildProgram(program, NUM_GPUS, device, "", NULL, NULL);
|
|
CHECK_ERROR(err);
|
|
|
|
if (err == CL_BUILD_PROGRAM_FAILURE)
|
|
{
|
|
size_t log_size;
|
|
for(int i = 0; i < NUM_GPUS; i++)
|
|
{
|
|
CHECK_ERROR(clGetProgramBuildInfo(program, device[i], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size));
|
|
char *log = (char *)malloc(log_size + 1);
|
|
CHECK_ERROR(clGetProgramBuildInfo(program, device[i], CL_PROGRAM_BUILD_LOG, log_size, log, NULL));
|
|
log[log_size] = 0;
|
|
printf("Compile error:\n%s\n", log);
|
|
free(log);
|
|
}
|
|
}
|
|
|
|
return program;
|
|
}
|
|
|
|
void mat_mul_init(float *A, float *B, float *C, int M, int N, int K)
|
|
{
|
|
// Get OpenCL platform
|
|
err = clGetPlatformIDs(1, &platform, NULL);
|
|
CHECK_ERROR(err);
|
|
// print_platform_info(platform);
|
|
|
|
// Get OpenCL device
|
|
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, NUM_GPUS, device, &device_cnt);
|
|
CHECK_ERROR(err);
|
|
// for(int i = 0; i < NUM_GPUS; i++)
|
|
// {
|
|
// print_device_info(device[i]);
|
|
// }
|
|
|
|
// Create OpenCL context
|
|
context = clCreateContext(NULL, NUM_GPUS, device, NULL, NULL, &err);
|
|
CHECK_ERROR(err);
|
|
|
|
// Compile program from "kernel.cl"
|
|
program = create_and_build_program_with_source(context, device, "kernel.cl");
|
|
// program = create_and_build_program_with_source(context, device, "kernel2.cl");
|
|
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < NUM_GPUS; i++)
|
|
{
|
|
// Create OpenCL command queue
|
|
queue[i] = clCreateCommandQueue(context, device[i], 0, &err);
|
|
CHECK_ERROR(err);
|
|
|
|
// Extract kernel from compiled program
|
|
kernel[i] = clCreateKernel(program, "sgemm", &err);
|
|
CHECK_ERROR(err);
|
|
|
|
// Calculate Distribution Unit
|
|
row_start[i] = M / NUM_GPUS * i + min(i, M % NUM_GPUS);
|
|
row_end[i] = M / NUM_GPUS * (i + 1) + min(i + 1, M % NUM_GPUS);
|
|
num_rows[i] = row_end[i] - row_start[i];
|
|
|
|
// Create GPU buffers
|
|
a_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, num_rows[i] * K * sizeof(float), NULL, &err);
|
|
CHECK_ERROR(err);
|
|
b_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, K * N * sizeof(float), NULL, &err);
|
|
CHECK_ERROR(err);
|
|
c_d[i] = clCreateBuffer(context, CL_MEM_READ_WRITE, num_rows[i] * N * sizeof(float), NULL, &err);
|
|
CHECK_ERROR(err);
|
|
|
|
err = clEnqueueWriteBuffer(queue[i], a_d[i], CL_FALSE, 0, num_rows[i] * K * sizeof(float), &A[row_start[i] * K], 0, NULL, NULL);
|
|
CHECK_ERROR(err);
|
|
err = clEnqueueWriteBuffer(queue[i], b_d[i], CL_FALSE, 0, K * N * sizeof(float), B, 0, NULL, NULL);
|
|
CHECK_ERROR(err);
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < NUM_GPUS; i++)
|
|
{
|
|
err = clFinish(queue[i]);
|
|
CHECK_ERROR(err);
|
|
}
|
|
}
|
|
|
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K)
|
|
{
|
|
// Read from GPU; c_d (gpu) -> C (cpu)
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < NUM_GPUS; i++)
|
|
{
|
|
err = clEnqueueReadBuffer(queue[i], c_d[i], CL_FALSE, 0, num_rows[i] * N * sizeof(float), &C[row_start[i] * N], 0, NULL, NULL);
|
|
CHECK_ERROR(err);
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
#pragma omp parallel for
|
|
for(int i = 0; i < NUM_GPUS; i++)
|
|
{
|
|
err = clFinish(queue[i]);
|
|
CHECK_ERROR(err);
|
|
}
|
|
}
|