chundoong-lab-ta/SamsungDS22/submissions/HW6/jicheol.kim/mat_mul.cu

141 lines
4.4 KiB
Plaintext

#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
#define TILE_WIDTH 16
int num_devices = 0;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];
int bx = blockIdx.x, by = blockIdx.y,
tx = threadIdx.x, ty = threadIdx.y,
Row = by * TILE_WIDTH + ty,
Col = bx * TILE_WIDTH + tx;
float Pvalue = 0;
for(int m = 0; m < (K-1)/TILE_WIDTH + 1; ++m){
if(Row < M && m*TILE_WIDTH+tx < K)
ds_M[ty][tx] = A[Row*K + m*TILE_WIDTH+tx];
else
ds_M[ty][tx] = 0;
if(Col < N && m*TILE_WIDTH+ty < K)
ds_N[ty][tx] = B[(m*TILE_WIDTH+ty)*N+Col];
else
ds_N[ty][tx] = 0;
__syncthreads();
for(int k = 0; k < TILE_WIDTH; ++k)
Pvalue += ds_M[ty][k] * ds_N[k][tx];
__syncthreads();
}
if(Row < M && Col < N)
C[Row*N+Col] = Pvalue;
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
int size = (i == num_devices - 1) ? (M- (M/num_devices*(num_devices -1))): M/num_devices;
dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);
//dim3 gridDim((N-1)/TILE_WIDTH+1, (M-1)/TILE_WIDTH+1, 1);
dim3 gridDim((N-1)/TILE_WIDTH+1, (size-1)/TILE_WIDTH+1, 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
//num_devices = 1; //
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}