177 lines
5.3 KiB
Plaintext
177 lines
5.3 KiB
Plaintext
#include "mat_mul.h"
|
|
|
|
#include <cstdio>
|
|
#include <cuda_runtime.h>
|
|
|
|
#define CUDA_CALL(f) \
|
|
{ \
|
|
cudaError_t err = (f); \
|
|
if (err != cudaSuccess) { \
|
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
|
err, cudaGetErrorString(err)); \
|
|
exit(1); \
|
|
} \
|
|
}
|
|
|
|
#define MAX_NUM_GPU 4
|
|
int num_devices = 0;
|
|
|
|
|
|
#define TILE_SIZE 32
|
|
#define WPT 8 // work per thread
|
|
#define RTS (TILE_SIZE / WPT)
|
|
|
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
|
|
|
const int row = threadIdx.x; // Local row ID (max: TILE_SIZE/WPT == RTS)
|
|
const int col = threadIdx.y; // Local col ID (max: TILE_SIZE)
|
|
const int globalRow = TILE_SIZE * blockIdx.x + row; // row index of C (N)
|
|
const int globalCol = TILE_SIZE * blockIdx.y + col; // column index of C (M)
|
|
const int numTiles = (K + TILE_SIZE - 1) / TILE_SIZE;
|
|
|
|
// local memory for tile
|
|
__shared__ float Asub[TILE_SIZE][TILE_SIZE];
|
|
__shared__ float Bsub[TILE_SIZE][TILE_SIZE];
|
|
|
|
// Init result memory
|
|
float res[WPT];
|
|
for (int i = 0; i < WPT; i++) {
|
|
res[i] = 0.0f;
|
|
}
|
|
|
|
for (int t = 0; t < numTiles; t++) {
|
|
const int tiledRow = TILE_SIZE * t + row;
|
|
const int tiledCol = TILE_SIZE * t + col;
|
|
|
|
// Load A and B to local memory
|
|
for (int w = 0; w < WPT; w++) {
|
|
if (((w * RTS + globalRow) >= M) || (tiledCol >= K)) {
|
|
Asub[w * RTS + row][col] = 0;
|
|
}
|
|
else {
|
|
Asub[w * RTS + row][col] = A[(w * RTS + globalRow) * K + tiledCol];
|
|
}
|
|
|
|
if (((w * RTS + tiledRow) >= K) || (globalCol >= N)) {
|
|
Bsub[w * RTS + row][col] = 0;
|
|
}
|
|
else {
|
|
Bsub[w * RTS + row][col] = B[(w * RTS + tiledRow) * N + globalCol];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
// result for tile
|
|
for (int i = 0; i < TILE_SIZE; i++) {
|
|
for (int j = 0; j < WPT; j++) {
|
|
res[j] += Asub[j * RTS + row][i] * Bsub[i][col];
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
// final results in C
|
|
for (int w = 0; w < WPT; w++) {
|
|
if ((w * RTS + globalRow < M) && (globalCol < N)) {
|
|
C[(w * RTS + globalRow) * N + globalCol] = res[w];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// Array of device (GPU) pointers
|
|
static float *a_d[MAX_NUM_GPU];
|
|
static float *b_d[MAX_NUM_GPU];
|
|
static float *c_d[MAX_NUM_GPU];
|
|
static int M, N, K;
|
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
|
|
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
|
|
|
// Launch kernel on every GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
dim3 blockDim(RTS, TILE_SIZE, 1);
|
|
dim3 gridDim(((Mend[i] - Mbegin[i]) + TILE_SIZE - 1) / TILE_SIZE, (N + TILE_SIZE - 1) / TILE_SIZE, 1);
|
|
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], (Mend[i] - Mbegin[i]), N, K);
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|
|
|
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
|
M = _M, N = _N, K = _K;
|
|
|
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
|
|
|
printf("Using %d devices\n", num_devices);
|
|
for (int i = 0; i < num_devices; i++) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
|
|
|
// Try printing more detailed information here
|
|
printf("[GPU %d] %s\n", i, prop.name);
|
|
}
|
|
|
|
if (num_devices <= 0) {
|
|
printf("No CUDA device found. Aborting\n");
|
|
exit(1);
|
|
}
|
|
|
|
// // temporary!!!
|
|
// num_devices = 1;
|
|
|
|
// Setup problem size for each GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
Mbegin[i] = (M / num_devices) * i;
|
|
Mend[i] = (M / num_devices) * (i + 1);
|
|
}
|
|
Mend[num_devices - 1] = M;
|
|
|
|
// Allocate device memory for each GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
|
}
|
|
|
|
// Upload A and B matrix to every GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
|
cudaMemcpyHostToDevice) );
|
|
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
// CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|
|
|
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
|
// Do any post-matmul cleanup work here.
|
|
|
|
// Download C matrix from GPUs
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
|
cudaMemcpyDeviceToHost) );
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|