chundoong-lab-ta/SamsungDS22/submissions/final/hongpooh.kim/tmp-B/convolution.cu

228 lines
7.2 KiB
Plaintext

#include "convolution.h"
#include <stdio.h>
#include <mpi.h>
#include <cuda_runtime.h>
#include "util.h"
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
//#define TS 32 // 1979.05 GFLOPS
//#define TS 16 // 3198.13 GFLOPS
#define TS 8 // 4617.74 GFLOPS
//#define TS 4 // 4151.70 GFLOPS
#define MAX_NUM_GPU 4
static float *input, *output, *filter;
static float *in_d[MAX_NUM_GPU], *out_d[MAX_NUM_GPU], *filter_d[MAX_NUM_GPU];
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static int num_devices = 1;
int size[2];
int Qnum[MAX_NUM_GPU];
__global__ void cuda2Dconv(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
const int globalRow = blockDim.x*blockIdx.x + threadIdx.x;
const int globalCol = blockDim.y*blockIdx.y + threadIdx.y;
int OH, OW;
OH = (_H + 2*_pad - _dilation*(_R - 1) - 1)/_stride + 1;
OW = (_W + 2*_pad - _dilation*(_S - 1) - 1)/_stride + 1;
int n, k, w;
w = globalCol;
n = w/(_K*OW);
w = w - n*(_K*OW);
k = w/OW;
w = w - k*OW;
int col = w;
int row = globalRow;
if (globalRow >= OH || globalCol >= _N*_K*OW)
return;
int start_row = row * _stride - _pad;
int start_col = col * _stride - _pad;
float o = 0.0f;
for (int c = 0 ; c < _C ; c++) {
for (int i = 0 ; i < _R ; i++) {
for (int j = 0 ; j < _S ; j++) {
int h = start_row + i * _dilation;
int w = start_col + j * _dilation;
if (h < 0 || w < 0 || h >= _H || w >= _W)
continue;
float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w];
float fil = _filter[k*_C*_R*_S + c*_R*_S + i*_S + j];
o += in * fil;
}
}
}
_output[n*_K*OH*OW + k*OH*OW + row*OW + col] = o;
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int offset = 0;
input = _input;
output = _output;
filter = _filter;
MPI_Request request;
MPI_Status status;
if (mpi_rank == 0 && mpi_world_size == 2 && size[1] != 0) {
MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W,
MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, _K*_C*_R*_S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
if (size[mpi_rank] < MAX_NUM_GPU)
num_devices = size[mpi_rank];
//printf("[hong] num_devices = %d\n", num_devices);
} else if (mpi_rank == 1 && size[mpi_rank] != 0) {
alloc_tensor(&input, size[1], C, H, W);
alloc_tensor(&output, size[1], K, OH, OW);
alloc_tensor(&filter, _K, _C, _R, _S);
MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, _K*_C*_R*_S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
if (size[mpi_rank] < MAX_NUM_GPU)
num_devices = size[mpi_rank];
//printf("[hong] num_devices = %d\n", num_devices);
}
//test: num_devices = 1;
offset = 0;
for (int i = 0 ; i < num_devices ; i++) {
CUDA_CALL( cudaMemcpy(in_d[i], input + offset, Qnum[i]*C*H*W*sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(filter_d[i], filter, K*C*R*S*sizeof(float),
cudaMemcpyHostToDevice) );
offset += Qnum[i]*C*H*W;
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
for (int i = 0; i < num_devices; i++) {
//dim3 gridDim((OH+TS-1)/TS, (Qnum[0]*K*OW + TS - 1)/TS, 1);
//dim3 blockDim(TS, TS, 1);
dim3 gridDim((OH+TS-1)/TS, (Qnum[i]*K*OW + TS - 1)/TS, 1);
dim3 blockDim(TS, TS, 1);
CUDA_CALL( cudaSetDevice(i) );
cuda2Dconv<<<gridDim, blockDim>>>(in_d[i], out_d[i], filter_d[i], Qnum[i],
_C, _H, _W, _K, _R, _S, _pad, _dilation, _stride);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
offset = 0;
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMemcpy(output + offset, out_d[i],
Qnum[i]*K*OH*OW * sizeof(float), cudaMemcpyDeviceToHost) );
offset += Qnum[i]*K*OH*OW;
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
if (mpi_rank == 0 && mpi_world_size == 2 && size[1] != 0)
MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW,
MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
else if (mpi_rank == 1 && size[1] != 0)
MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W; K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
OH = (H + 2*pad - dilation*(R - 1) - 1)/stride + 1;
OW = (W + 2*pad - dilation*(S - 1) - 1)/stride + 1;
//if (mpi_world_size == 2 && _N > 4)
if (mpi_world_size == 2)
size[1] = _N / 2;
else
size[1] = 0;
size[0] = N - size[1];
if (size[mpi_rank] < MAX_NUM_GPU) {
num_devices = size[mpi_rank];
for (int i = 0 ; i < size[mpi_rank] ; i++)
Qnum[i] = 1;
} else {
num_devices = MAX_NUM_GPU;
int remain = size[mpi_rank] % MAX_NUM_GPU;
int quot = size[mpi_rank] / MAX_NUM_GPU;
for (int i = 0 ; i < MAX_NUM_GPU ; i++) {
Qnum[i] = quot;
if (i < remain)
Qnum[i]++;
}
}
for (int i = 0 ; i < num_devices ; i++) {
CUDA_CALL( cudaSetDevice(i) );
//printf("[hong] cudaMallock - i = %d\n", i);
CUDA_CALL( cudaMalloc(&in_d[i], Qnum[i]*C*H*W*sizeof(float)) );
CUDA_CALL( cudaMalloc(&out_d[i], Qnum[i]*K*OH*OW*sizeof(float)) );
CUDA_CALL( cudaMalloc(&filter_d[i], K*C*R*S*sizeof(float)) );
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}