chundoong-lab-ta/SamsungDS22/submissions/final/junjip.lee/B/convolution.cu

327 lines
9.1 KiB
Plaintext

#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include "util.h"
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int outH, outW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
int num_devices = 0;
#define MAX_NUM_GPU 4
#define TILE_WIDTH 8
static float *input_d[MAX_NUM_GPU];
static float *output_d[MAX_NUM_GPU];
static float *filter_d[MAX_NUM_GPU];
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU];
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
__global__ void conv_cu(
float *_input,float *_output, float *_filter,
int _N,int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride){
const int globalRow = blockDim.x * blockIdx.x + threadIdx.x;
const int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
float temp =0.0f;
int n,k,w,OH, OW,col,_row,_col;
OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1;
OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1;
if(globalRow>=OH || globalCol >= _N*_K*OW) return;
n = globalCol / (_K * OW);
k= (globalCol- n *(_K * OW))/ OW;
w= (globalCol- n *(_K * OW))-k*OW;
col = w;
_row = globalRow * _stride - _pad;
_col = col * _stride - _pad;
for (int c = 0; c<_C;c++){
for(int i=0; i<_R;i++){
for(int j=0;j<_S;j++){
int height = _row + i *_dilation;
int width = _col + j *_dilation;
if(height<0|| width<0 || height>=_H || width>=_W) continue;
float in = _input[n*_C*_W*_H + c*_W*_H + height*_W+width];
float fil = _filter[k*_C*_R*_S + c*_R*_S + i*_S+j];
temp += in * fil;
}
}
}
// printf("%s %d jjlee check output %lf\n",temp);
_output[n*_K*OH*OW + k*OH*OW + globalRow*OW+col]=temp;
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int mpi_work[2];
MPI_Request request;
MPI_Status status;
int OH, OW;
output=_output;
OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1;
OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1;
input = _input;
output = _output;
filter = _filter;
if (mpi_world_size == 2) //NODE 2
{
//if(_N==1)
mpi_work[1] = _N / 2;
mpi_work[0] = _N - (_N / 2);
}
else //NODE 1
{
mpi_work[0] = N;
}
outH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
outW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_world_size == 2) {
if(mpi_rank == 0 )
{
MPI_Isend(&input[mpi_work[0]*C*H*W], mpi_work[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
}
else {
alloc_tensor(&input, mpi_work[1], C, H, W);
alloc_tensor(&output, mpi_work[1], K, outH, outW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(input, mpi_work[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );//jjlee
// printf("%s %d num_devices %d n (begin %d end %d)%d \n",__func__,__LINE__,num_devices,Nbegin[i],Nend[i],Nend[i] - Nbegin[i]);
CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * _C*_H*_W,
(Nend[i] - Nbegin[i]) * _C*_H*_W * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(filter_d[i], filter, _K * _C*_R*_S * sizeof(float), cudaMemcpyHostToDevice) );
}
//printf("%s %d \n",__func__,__LINE__);
for (int i = 0; i < num_devices; i++) {
dim3 gridDim((OH+TILE_WIDTH-1)/TILE_WIDTH, ( (Nend[i] - Nbegin[i]) *K*OW + TILE_WIDTH - 1)/TILE_WIDTH, 1);
dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);
CUDA_CALL( cudaSetDevice(i) );
conv_cu<<<gridDim, blockDim>>>(input_d[i], output_d[i], filter_d[i], (Nend[i] - Nbegin[i]) , _C, _H, _W, _K, _R, _S, _pad, _dilation, _stride);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );//jjlee
CUDA_CALL( cudaDeviceSynchronize() );
}
}
#if 0
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
input = _input;
output = _output;
filter = _filter;
outH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
outW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0) {
for (int n = 0; n < N; ++n) {
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < outH; ++oh) {
for (int ow = 0; ow < outW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
}
}
}
output[n * K * outH * outW + k * outH * outW + oh * outW + ow] = o;
}
}
}
}
}
}
#endif
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
int mpi_work[2];
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
if (mpi_world_size == 2) //NODE 2
{
mpi_work[1] = _N / 2;
mpi_work[0] = _N - (_N / 2);
}
else //NODE 1
{
mpi_work[0] = _N;
}
N=mpi_work[0];
int OH, OW;
OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1;
OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
//num_devices=2;
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Nbegin[i] = (N / num_devices) * i;
Nend[i] = (N / num_devices) * (i + 1);
}
Nend[num_devices - 1] = N;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&input_d[i], (Nend[i] - Nbegin[i]) * C*H*W * sizeof(float)) );
CUDA_CALL( cudaMalloc(&filter_d[i],K * C*R*S * sizeof(float)) );
CUDA_CALL( cudaMalloc(&output_d[i], (Nend[i] - Nbegin[i]) * K*OH*OW * sizeof(float)) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int OH, OW;
int mpi_work[2];
MPI_Request request;
MPI_Status status;
if (mpi_world_size == 2) //NODE 2
{
mpi_work[1] = _N / 2;
mpi_work[0] = _N - (_N / 2);
}
else //NODE 1
{
mpi_work[0] = N;
}
OH = (_H + 2 *_pad - _dilation * (_R - 1) -1) / _stride + 1;
OW = (_W + 2 *_pad - _dilation * (_S - 1) -1) / _stride + 1;
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMemcpy(output + Nbegin[i] * _K*OH*OW, output_d[i],
(Nend[i] - Nbegin[i]) * _K*OH*OW* sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
if (mpi_world_size == 2) {
if(mpi_rank == 0){
// printf("%s %d IRecv mpi_work[1] %d %d \n",__func__,__LINE__,mpi_work[1],mpi_work[1]*K*outH*outW);
MPI_Recv(&output[mpi_work[0]*K*outH*outW], mpi_work[1]*K*outH*outW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
}
else
{
// printf("%s %d ISend mpi_work[1] %d %d \n",__func__,__LINE__,mpi_work[1],mpi_work[1]*K*outH*outW);
MPI_Isend(output, mpi_work[1]*K*outH*outW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}
}