518 lines
18 KiB
Plaintext
518 lines
18 KiB
Plaintext
#include "convolution.h"
|
|
#include "util.h"
|
|
#include <mpi.h>
|
|
#include <stdio.h>
|
|
#include <cstdio>
|
|
#include <cuda_runtime.h>
|
|
|
|
#define min(a,b) (a>b?b:a)
|
|
#define CUDA_CALL(f) \
|
|
{ \
|
|
cudaError_t err = (f); \
|
|
if (err != cudaSuccess) { \
|
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
|
err, cudaGetErrorString(err)); \
|
|
exit(1); \
|
|
} \
|
|
}
|
|
|
|
static float *input, *output, *filter;
|
|
static int N, C, H, W;
|
|
static int K, R, S;
|
|
static int OH, OW;
|
|
static int pad;
|
|
static int dilation;
|
|
static int stride;
|
|
static int mpi_rank, mpi_world_size;
|
|
|
|
void print_tensor(float *m, int A, int B, int C, int D) {
|
|
for (int i = 0; i < A; ++i) {
|
|
for (int j = 0; j < B; ++j) {
|
|
printf("[%d][%d]\n", i, j);
|
|
for (int k = 0; k < C; ++k) {
|
|
for (int l = 0; l < D; ++l) {
|
|
printf("%+.3f ", m[i*B*C*D + j*C*D + k*D + l]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
__device__ void print_1d_arr(float *m, int size) {
|
|
for (int i = 0; i < size; ++i) {
|
|
printf("%+.3f ", m[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
|
|
#define OTILE_SIZE 32 // Output tile == Block size
|
|
#define FTILE_SIZE 16 // Filter tile
|
|
#define ITILE_SIZE 64 // Input tile
|
|
|
|
//#define OTILE_SIZE 4 // Output tile == Block size
|
|
//#define FTILE_SIZE 2 // Filter tile
|
|
//#define ITILE_SIZE 8 // Input tile
|
|
#define TEST_TILE_SIZE OTILE_SIZE
|
|
|
|
#define OF_RATIO (OTILE_SIZE/FTILE_SIZE)
|
|
#define IO_RATIO (ITILE_SIZE/OTILE_SIZE)
|
|
|
|
|
|
#define MAX_NUM_GPU 4
|
|
int num_devices = 0;
|
|
// Array of device (GPU) pointers
|
|
static float *input_d[MAX_NUM_GPU];
|
|
static float *filter_d[MAX_NUM_GPU];
|
|
static float *output_d[MAX_NUM_GPU];
|
|
static float *test_d[MAX_NUM_GPU];
|
|
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU];
|
|
|
|
void gpu_init(){
|
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
|
if(num_devices > MAX_NUM_GPU)
|
|
num_devices = MAX_NUM_GPU;
|
|
|
|
//printf("Using %d devices\n", num_devices);
|
|
for (int i = 0; i < num_devices; i++) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
|
|
|
// Try printing more detailed information here
|
|
//printf("[GPU %d] %s\n", i, prop.name);
|
|
}
|
|
|
|
if (num_devices <= 0) {
|
|
printf("No CUDA device found. Aborting\n");
|
|
exit(1);
|
|
}
|
|
|
|
// Setup problem size for each GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
Nbegin[i] = (N / num_devices) * i;
|
|
Nend[i] = (N / num_devices) * (i + 1);
|
|
}
|
|
Nend[num_devices - 1] = N;
|
|
|
|
// Allocate device memory for each GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaMalloc(&input_d[i], (Nend[i] - Nbegin[i]) * (C*H*W) * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&filter_d[i], (K*C*R*S) * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&output_d[i], (Nend[i] - Nbegin[i]) * (K*OH*OW) * sizeof(float)) );
|
|
//CUDA_CALL( cudaMalloc(&test_d[i], (TEST_TILE_SIZE*TEST_TILE_SIZE*sizeof(float)) ));
|
|
}
|
|
|
|
// Upload A and B matrix to every GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaMemcpy(input_d[i], input + Nbegin[i] * (C*H*W),
|
|
(Nend[i] - Nbegin[i]) * (C*H*W) * sizeof(float),
|
|
cudaMemcpyHostToDevice) );
|
|
CUDA_CALL( cudaMemcpy(filter_d[i], filter, (K*C*R*S) * sizeof(float), cudaMemcpyHostToDevice) );
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
//CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaDeviceSynchronize());
|
|
}
|
|
}
|
|
|
|
void convolution_gpu_final(){
|
|
// Download C matrix from GPUs
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaMemcpy(output + Nbegin[i] * (K*OH*OW), output_d[i],
|
|
(Nend[i] - Nbegin[i]) * (K*OH*OW) * sizeof(float),
|
|
cudaMemcpyDeviceToHost));
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
//CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaDeviceSynchronize());
|
|
}
|
|
|
|
/*float* test_tile_ret;
|
|
alloc_tensor(&test_tile_ret, 1, 1, TEST_TILE_SIZE, TEST_TILE_SIZE);
|
|
|
|
CUDA_CALL( cudaMemcpy(test_tile_ret, test_d[0],
|
|
TEST_TILE_SIZE*TEST_TILE_SIZE*sizeof(float),
|
|
cudaMemcpyDeviceToHost));*/
|
|
|
|
//print_tensor(input, N, C, H, W);
|
|
//print_tensor(filter, K, C, R, S);
|
|
//print_tensor(test_tile_ret, 1, 1, TEST_TILE_SIZE, TEST_TILE_SIZE);
|
|
//print_tensor(output, N, C, OH, OW);
|
|
}
|
|
|
|
|
|
__global__ void convolution_kernel(
|
|
float *input, float *filter, float *output, /*float *test,*/
|
|
int N, int C, int H, int W,
|
|
int K, int R, int S, int OH, int OW,
|
|
int pad, int dilation, int stride)
|
|
{
|
|
int row = threadIdx.y;
|
|
int col = threadIdx.x;
|
|
int oh = blockDim.y * blockIdx.y + threadIdx.y;
|
|
int ow = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
//dim2 input_block_min;
|
|
int input_block_min_y = (blockDim.y*blockIdx.y) * stride - pad;
|
|
int input_block_min_x = (blockDim.x*blockIdx.x) * stride - pad;
|
|
|
|
//dim2 input_block_max;
|
|
int input_block_max_y = min(blockDim.y*blockIdx.y + blockDim.y - 1, H-1) * stride - pad + (R-1) * dilation;
|
|
int input_block_max_x = min(blockDim.x*blockIdx.x + blockDim.x - 1, W-1) * stride - pad + (S-1) * dilation;
|
|
|
|
/*if(oh==0 && ow==0){
|
|
printf("stride=%d\n", stride);
|
|
printf("block min(%d,%d)\n", input_block_min_y, input_block_min_x);
|
|
printf("block max(%d,%d)\n", input_block_max_y, input_block_max_x);
|
|
}*/
|
|
|
|
__shared__ float Isub[ITILE_SIZE][ITILE_SIZE];
|
|
__shared__ float Fsub[FTILE_SIZE][FTILE_SIZE];
|
|
|
|
for (int n = 0; n < N; ++n) {
|
|
for (int k = 0; k < K; ++k) {
|
|
float o = 0.f;
|
|
for (int c = 0; c < C; ++c) {
|
|
//int h_base_step = ITILE_SIZE - R + 1;
|
|
//int w_base_step = ITILE_SIZE - S + 1;
|
|
int input_slice_min_x, input_slice_min_y;
|
|
int input_slice_max_x, input_slice_max_y;
|
|
for(input_slice_min_y = input_block_min_y; input_slice_min_y <= input_block_max_y; input_slice_min_y += ITILE_SIZE) {
|
|
input_slice_max_y = min(input_slice_min_y + ITILE_SIZE - 1, input_block_max_y);
|
|
for(input_slice_min_x = input_block_min_x; input_slice_min_x <= input_block_max_x; input_slice_min_x += ITILE_SIZE) {
|
|
input_slice_max_x = min(input_slice_min_x + ITILE_SIZE - 1, input_block_max_x);
|
|
|
|
/*if(oh==0 && ow==3){
|
|
printf("i_slc min(%d,%d)\n", input_slice_min_y, input_slice_min_x);
|
|
printf("i_slc max(%d,%d)\n", input_slice_max_y, input_slice_max_x);
|
|
}*/
|
|
|
|
//load input slice to shared memory
|
|
for(int j=0; j<IO_RATIO; j++)
|
|
for(int i=0; i<IO_RATIO; i++) {
|
|
int input_idx = n*(C*H*W) + c*(H*W) + (input_slice_min_y + j*OTILE_SIZE + row)*(W) + (input_slice_min_x + i*OTILE_SIZE + col);
|
|
//if(oh == 0 && ow == 3)
|
|
// printf("(%d,%d) input %d, row=%d, col=%d, miny=%d, minx=%d\n", j,i,input_idx, row, col, input_slice_min_y, input_slice_min_x);
|
|
if( (input_slice_min_y + j*OTILE_SIZE + row) < H
|
|
&& 0 <= (input_slice_min_y + j*OTILE_SIZE + row)
|
|
&& (input_slice_min_x + i*OTILE_SIZE + col) < W
|
|
&& 0 <= (input_slice_min_x + i*OTILE_SIZE + col) )
|
|
Isub[row + j*OTILE_SIZE][col + i*OTILE_SIZE] = input[input_idx];
|
|
else
|
|
Isub[row + j*OTILE_SIZE][col + i*OTILE_SIZE] = 0.0f;
|
|
|
|
//if(blockIdx.y == 0 && blockIdx.x == 0 && h_base == 2*h_base_step && w_base == 1*w_base_step){
|
|
//test[(row + j*OTILE_SIZE)*ITILE_SIZE + col + i*OTILE_SIZE] = Isub[row + j*OTILE_SIZE][col + i*OTILE_SIZE];
|
|
//test[(row + j*OTILE_SIZE)*ITILE_SIZE + col + i*OTILE_SIZE] = 1.0f;
|
|
//test[row*ITILE_SIZE + col] = row*100.0f + col*10.0f + 1.0f;
|
|
//test[row*ITILE_SIZE + col] += 1.0f;
|
|
//}
|
|
}
|
|
|
|
|
|
/*int new_row = row*(2) + (col/16);
|
|
int new_col = (col%16)*4;
|
|
int input_idx = n*(C*H*W) + c*(H*W) + (input_slice_min_y + new_row)*(W) + (input_slice_min_x + new_col);
|
|
if((input_slice_min_y + new_row) < H && (input_slice_min_x + new_col + 0) < W )
|
|
Isub[new_row][new_col + 0] = input[input_idx + 0];
|
|
if((input_slice_min_y + new_row) < H && (input_slice_min_x + new_col + 1) < W )
|
|
Isub[new_row][new_col + 1] = input[input_idx + 1];
|
|
if((input_slice_min_y + new_row) < H && (input_slice_min_x + new_col + 2) < W )
|
|
Isub[new_row][new_col + 2] = input[input_idx + 2];
|
|
if((input_slice_min_y + new_row) < H && (input_slice_min_x + new_col + 3) < W )
|
|
Isub[new_row][new_col + 3] = input[input_idx + 3];*/
|
|
|
|
|
|
/* __syncthreads();
|
|
if(n==0 && oh==0 && ow==0){
|
|
printf("(%d,%d)->(%d,%d)\n", row, col, new_row, new_col);
|
|
printf("i tile\n");
|
|
for(int i=0; i<ITILE_SIZE; i++)
|
|
print_1d_arr(Isub[i], ITILE_SIZE);
|
|
}*/
|
|
|
|
// filter slide control
|
|
for(int r_base = 0; r_base < R; r_base += FTILE_SIZE) {
|
|
for(int s_base = 0; s_base < S; s_base += FTILE_SIZE) {
|
|
|
|
//load filter slice
|
|
if((row % (OF_RATIO) == 0) && (col % (OF_RATIO) == 0)) {
|
|
int filter_idx = k*(C*R*S) +c*(R*S) + (r_base + row/OF_RATIO)*(S) + s_base + col/OF_RATIO ;
|
|
if((r_base + row/OF_RATIO) < R && (s_base + col/OF_RATIO) < S)
|
|
Fsub[row/OF_RATIO][col/OF_RATIO] = filter[filter_idx];
|
|
else
|
|
Fsub[row/OF_RATIO][col/OF_RATIO] = 0.0f;
|
|
/*if(blockIdx.y == 0 && blockIdx.x == 0 && r_base == 1*FTILE_SIZE && s_base == 1*FTILE_SIZE){
|
|
test[(row/OF_RATIO)*TEST_TILE_SIZE + col/OF_RATIO] = Fsub[row/OF_RATIO][col/OF_RATIO];
|
|
//test[(row/OF_RATIO)*TEST_TILE_SIZE + col/OF_RATIO] = 1.0f;
|
|
}*/
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
for (int r = 0; r < FTILE_SIZE; ++r) {
|
|
for (int s = 0; s < FTILE_SIZE; ++s) {
|
|
int h = oh * stride - pad + (r_base + r)*dilation;
|
|
int w = ow * stride - pad + (s_base + s)*dilation;
|
|
if(h < input_slice_min_y || h > input_slice_max_y || w < input_slice_min_x || w > input_slice_max_x) continue;
|
|
//input slice coordinate
|
|
int slc_h = h - input_slice_min_y;
|
|
int slc_w = w - input_slice_min_x;
|
|
float i = Isub[slc_h][slc_w];
|
|
float f = Fsub[r][s];
|
|
o += i * f;
|
|
/*if(oh == 1 && ow == 0){
|
|
printf("(%d,%d)%+.3f * %+.3f = %+.3f\n", r, s, i, f, o);
|
|
printf(" h=%d, w=%d rs_base(%d,%d)\n", h, w, r_base, s_base);
|
|
printf(" slc h=%d, w=%d\n", slc_h, slc_w);
|
|
}*/
|
|
}
|
|
}
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}} // filter slide control
|
|
|
|
}} // input slide control
|
|
|
|
} // C
|
|
|
|
int output_idx = n*(K*OH*OW) + k*(OH*OW) + oh*(OW) + ow;
|
|
//if(output_idx < (N*K*OH*OW))
|
|
if(oh<OH && ow<OW){
|
|
//if(oh == 0 && ow == 0)
|
|
// printf("c(%d,%d) = %+.3f\n", oh, ow, o);
|
|
output[output_idx] = o;
|
|
//if(blockIdx.y == 0 && blockIdx.x == 0 && r_base == 1*FTILE_SIZE && s_base == 1*FTILE_SIZE){
|
|
// test[(row/OF_RATIO)*TEST_TILE_SIZE + col/OF_RATIO] = Fsub[row/OF_RATIO][col/OF_RATIO];
|
|
//}
|
|
}
|
|
//output[n*(K*OH*OW) + k*(OH*OW) + oh*(OW) + ow] = oh*100.0f +ow*1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
__global__ void convolution_kernel_2(
|
|
float *input, float *filter, float *output,
|
|
int N, int C, int H, int W,
|
|
int K, int R, int S, int OH, int OW,
|
|
int pad, int dilation, int stride)
|
|
{
|
|
/*int row = threadIdx.y;
|
|
int col = threadIdx.x;
|
|
int globalRow = blockDim.y * blockIdx.y + threadIdx.y;
|
|
int globalCol = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
int oh = globalRow;
|
|
int ow = globalCol;
|
|
if(oh>=OH || ow>=OW) return;*/
|
|
|
|
int n = blockIdx.x;
|
|
int k = blockIdx.y;
|
|
int oh = blockIdx.z;
|
|
int ow = threadIdx.x;
|
|
|
|
//for (int n = 0; n < N; ++n) {
|
|
// for (int k = 0; k < K; ++k) {
|
|
float o = 0.f;
|
|
|
|
int input_c_ptr = n*(C*H*W);
|
|
int filter_c_ptr = k*(C*R*S);
|
|
for (int c = 0; c < C; ++c) {
|
|
for (int r = 0; r < R; ++r) {
|
|
for (int s = 0; s < S; ++s) {
|
|
int h = oh * stride - pad + r * dilation;
|
|
int w = ow * stride - pad + s * dilation;
|
|
if (h < 0 || h >= H || w < 0 || w >= W) continue;
|
|
//float i = input[n * C * H * W + c * H * W + h * W + w];
|
|
float i = input[input_c_ptr + h*W + w];
|
|
//float f = filter[k*(C*R*S) + c*(R*S) + r*(S) + s];
|
|
float f = filter[filter_c_ptr + r*(S) + s];
|
|
o += i * f;
|
|
}
|
|
}
|
|
input_c_ptr += H*W;
|
|
filter_c_ptr += R*S;
|
|
}
|
|
int output_idx = n*(K*OH*OW) + k*(OH*OW) + oh*(OW) + ow;
|
|
//if(output_idx < (N*K*OH*OW))
|
|
output[output_idx] = o;
|
|
//output[n*(K*OH*OW) + k*(OH*OW) + oh*(OW) + ow] = oh*100.0f +ow*1.0f;
|
|
// }
|
|
//}
|
|
}
|
|
|
|
void convolution_gpu(){
|
|
gpu_init();
|
|
|
|
for (int i = 0; i < num_devices; i++) {
|
|
// kernel
|
|
//dim3 blockDim(OTILE_SIZE, OTILE_SIZE, 1);
|
|
//dim3 gridDim((OW+OTILE_SIZE-1)/OTILE_SIZE, (OH+OTILE_SIZE-1)/OTILE_SIZE, 1);
|
|
|
|
// kernel_2
|
|
dim3 blockDim(OW, 1);
|
|
dim3 gridDim(Nend[i]-Nbegin[i], K, OH);
|
|
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
//printf("kernel run:%d\n", i);
|
|
convolution_kernel_2<<<gridDim, blockDim>>>(input_d[i], filter_d[i], output_d[i], /*test_d[i],*/
|
|
Nend[i]-Nbegin[i], C, H, W, K, R, S, OH, OW, pad, dilation, stride) ;
|
|
}
|
|
|
|
convolution_gpu_final();
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|
|
|
|
void convolution(
|
|
float *_input, float *_output, float *_filter,
|
|
int _N, int _C, int _H, int _W,
|
|
int _K, int _R, int _S,
|
|
int _pad, int _dilation, int _stride) {
|
|
input = _input;
|
|
output = _output;
|
|
filter = _filter;
|
|
|
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
|
|
|
int default_div_size = N/mpi_world_size;
|
|
MPI_Status status;
|
|
MPI_Request request;
|
|
|
|
if (mpi_rank == 0) {
|
|
// 1. Distribute batch to the other nodes
|
|
//timer_start(1);
|
|
|
|
MPI_Request arrA_req[4];
|
|
MPI_Status arrA_status[4];
|
|
for(int target_rank = 1; target_rank < mpi_world_size; target_rank++){
|
|
int div_start, div_size;
|
|
div_start = target_rank * default_div_size;
|
|
div_size = default_div_size;
|
|
if(target_rank == (mpi_world_size - 1))
|
|
div_size += N - (default_div_size * mpi_world_size);
|
|
|
|
//printf("send. target_rank=%d, div_start=%d, div_size=%d, tot_size=%d\n", target_rank, div_start, div_size, div_size * C*H*W);
|
|
MPI_Isend(input + (div_start * C*H*W), div_size * C*H*W, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &arrA_req[target_rank-1]);
|
|
|
|
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &request);
|
|
}
|
|
// 2. Broadcase all Filters
|
|
//MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD);
|
|
|
|
//double elapsed_time = timer_stop(1);
|
|
//printf("[rank %d] scatter time: %f sec\n", mpi_rank, elapsed_time);
|
|
|
|
int original_N = N;
|
|
N = default_div_size;
|
|
|
|
// 3. Do Convolution
|
|
//timer_start(1);
|
|
//convolution_omp();
|
|
convolution_gpu();
|
|
//elapsed_time = timer_stop(1);
|
|
//printf("[rank %d] time: %f sec\n", mpi_rank, elapsed_time);
|
|
N = original_N;
|
|
|
|
//timer_start(1);
|
|
// 4. Receive result from the other node
|
|
|
|
MPI_Request arrC_req[4];
|
|
MPI_Status arrC_status[4];
|
|
for(int target_rank = 1; target_rank < mpi_world_size; target_rank++){
|
|
int div_start, div_size;
|
|
div_start = target_rank * default_div_size;
|
|
div_size = default_div_size;
|
|
if(target_rank == (mpi_world_size - 1))
|
|
div_size += N - (default_div_size * mpi_world_size);
|
|
|
|
//printf("wait div_size=%d\n", div_size);
|
|
MPI_Irecv(output + (div_start * K*OH*OW), div_size * K*OH*OW, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &arrC_req[target_rank-1]);
|
|
//MPI_Recv(output + (div_start * K*OH*OW), div_size * K*OH*OW, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &arrC_status[target_rank-1]);
|
|
}
|
|
//MPI_Waitall(mpi_world_size-1, arrA_req, arrA_status);
|
|
MPI_Waitall(mpi_world_size-1, arrC_req, arrC_status);
|
|
|
|
//elapsed_time = timer_stop(1);
|
|
//printf("[rank %d] collect time: %f sec\n", mpi_rank, elapsed_time);
|
|
}else{
|
|
//0. alloc local memory
|
|
int div_size;
|
|
|
|
div_size = default_div_size;
|
|
if(mpi_rank == (mpi_world_size - 1))
|
|
div_size += N - (default_div_size * mpi_world_size);
|
|
|
|
int original_N = N;
|
|
N = div_size; // Adjust N size
|
|
//printf("defulat div size=%d\n", default_div_size);
|
|
|
|
alloc_tensor(&input, N, C, H, W);
|
|
alloc_tensor(&filter, K, C, R, S);
|
|
alloc_tensor(&output, N, K, OH, OW);
|
|
|
|
// 1. Recv part of A
|
|
//printf("sub. rank=%d, div_size=%d, Recv start, tot_size=%d\n", mpi_rank, div_size, N*C*H*W);
|
|
MPI_Recv(input, N*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
|
//printf("sub. rank=%d, div_size=%d, Recv end\n", mpi_rank, div_size);
|
|
|
|
// 2. Recv full Filter
|
|
//MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD);
|
|
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
|
|
|
// 3. Do Convolution
|
|
//timer_start(1);
|
|
//convolution_omp();
|
|
convolution_gpu();
|
|
//double elapsed_time = timer_stop(1);
|
|
//printf("[rank %d] time: %f sec\n", mpi_rank, elapsed_time);
|
|
|
|
// 4. Send C to rank 0 node.
|
|
//printf("sub. end. my rank=%d, div_size=%d\n", mpi_rank, div_size);
|
|
MPI_Send(output, N*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
|
|
|
|
N = original_N;
|
|
|
|
//free
|
|
free(input);
|
|
free(filter);
|
|
free(output);
|
|
}
|
|
}
|
|
|
|
|
|
void convolution_init(
|
|
int _N, int _C, int _H, int _W,
|
|
int _K, int _R, int _S,
|
|
int _pad, int _dilation, int _stride) {
|
|
N = _N; C = _C; H = _H; W = _W;
|
|
K = _K; R = _R; S = _S;
|
|
pad = _pad;
|
|
dilation = _dilation;
|
|
stride = _stride;
|
|
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
|
}
|
|
|
|
|
|
void convolution_final(
|
|
int _N, int _C, int _H, int _W,
|
|
int _K, int _R, int _S,
|
|
int _pad, int _dilation, int _stride) {
|
|
}
|