184 lines
5.7 KiB
C++
184 lines
5.7 KiB
C++
#include "mat_mul.h"
|
|
#include "util.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <mpi.h>
|
|
#include <immintrin.h>
|
|
|
|
#define IBLOCK (num_threads)
|
|
#define JBLOCK (1024)
|
|
#define KBLOCK (512)
|
|
#define VEC_NUM (1)
|
|
#define VEC_SIZE (64)
|
|
#define VECDATA_SIZE (VEC_SIZE>>2)
|
|
#define MIN(a,b) ((a>b)?b:a)
|
|
|
|
static float *A, *B, *C;
|
|
static int M, N, K;
|
|
static int num_threads;
|
|
static int mpi_rank, mpi_world_size;
|
|
int si, ei, slice;
|
|
|
|
static void mat_mul_omp() {
|
|
// TODO: parallelize & optimize matrix multiplication
|
|
// Use num_threads per node
|
|
int i,j,k;
|
|
int ii, jj, kk;
|
|
int EI = ei - si;
|
|
|
|
if ((K&(KBLOCK-1)) || (N&(JBLOCK-1))) {
|
|
//if (1)) {
|
|
#pragma omp parallel num_threads(num_threads)
|
|
#pragma omp for nowait
|
|
for (ii = 0; ii < EI; ii+=IBLOCK) {
|
|
for (jj = 0; jj < N; jj+=JBLOCK) {
|
|
for (kk = 0; kk < K; kk+=KBLOCK) {
|
|
for (k = kk; k < MIN(K,kk+KBLOCK); ++k) {
|
|
for (i = ii; i < MIN(EI,ii+IBLOCK); i+=1) {
|
|
float Aik = A[i * K + k];
|
|
unsigned long spC, epC;
|
|
__m512 va = _mm512_set1_ps(Aik);
|
|
__m512 vb[VEC_NUM],vc[VEC_NUM];
|
|
spC = ((unsigned long)&C[i*N] + (VEC_SIZE*VEC_NUM-1)) & (VEC_SIZE*VEC_NUM-1);
|
|
epC = (unsigned long)&C[(i+1)*N] & (VEC_SIZE*VEC_NUM-1);
|
|
for (j = jj; (unsigned long)&C[i * N + j] < spC; j=j+1) {
|
|
C[i * N + j] += Aik * B[k * N + j];
|
|
}
|
|
for (; (unsigned long)&C[i * N + j] < epC; j+=VECDATA_SIZE*VEC_NUM) {
|
|
vb[0] = _mm512_load_ps(&B[k*N+j]);
|
|
vc[0] = _mm512_load_ps(&C[i*N+j]);
|
|
vc[0] = _mm512_fmadd_ps(va,vb[0],vc[0]);
|
|
_mm512_store_ps(&C[i*N+j],vc[0]);
|
|
}
|
|
for (; j < MIN(N,jj+JBLOCK); j=j+1) {
|
|
C[i * N + j] += Aik * B[k * N + j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#define KSTEP (4)
|
|
#define JSTEP (2)
|
|
#pragma omp parallel num_threads(num_threads)
|
|
#pragma omp for nowait
|
|
for (ii = 0; ii < EI; ii+=IBLOCK) {
|
|
for (jj = 0; jj < N; jj+=JBLOCK) {
|
|
for (kk = 0; kk < K; kk+=KBLOCK) {
|
|
for (k = kk; k < kk+KBLOCK; k=k+KSTEP) {
|
|
for (i = ii; i < MIN(EI,ii+IBLOCK); i+=1) {
|
|
__m512 va[KSTEP], vb[KSTEP*JSTEP],vc[JSTEP];
|
|
va[0] = _mm512_set1_ps(A[i*K+k+0]);
|
|
va[1] = _mm512_set1_ps(A[i*K+k+1]);
|
|
va[2] = _mm512_set1_ps(A[i*K+k+2]);
|
|
va[3] = _mm512_set1_ps(A[i*K+k+3]);
|
|
for (j = jj; j < jj+JBLOCK; j+=VECDATA_SIZE*JSTEP) {
|
|
vc[0] = _mm512_load_ps(&C[i*N+j]);
|
|
vc[1] = _mm512_load_ps(&C[i*N+j+VECDATA_SIZE]);
|
|
vb[0] = _mm512_load_ps(&B[(k+0)*N+j]);
|
|
vb[1] = _mm512_load_ps(&B[(k+1)*N+j]);
|
|
vb[2] = _mm512_load_ps(&B[(k+2)*N+j]);
|
|
vb[3] = _mm512_load_ps(&B[(k+3)*N+j]);
|
|
vc[0] = _mm512_fmadd_ps(va[0],vb[0],vc[0]);
|
|
vc[0] = _mm512_fmadd_ps(va[1],vb[1],vc[0]);
|
|
vc[0] = _mm512_fmadd_ps(va[2],vb[2],vc[0]);
|
|
vc[0] = _mm512_fmadd_ps(va[3],vb[3],vc[0]);
|
|
vb[4] = _mm512_load_ps(&B[(k+0)*N+j+VECDATA_SIZE]);
|
|
vb[5] = _mm512_load_ps(&B[(k+1)*N+j+VECDATA_SIZE]);
|
|
vb[6] = _mm512_load_ps(&B[(k+2)*N+j+VECDATA_SIZE]);
|
|
vb[7] = _mm512_load_ps(&B[(k+3)*N+j+VECDATA_SIZE]);
|
|
vc[1] = _mm512_fmadd_ps(va[0],vb[4],vc[1]);
|
|
vc[1] = _mm512_fmadd_ps(va[1],vb[5],vc[1]);
|
|
vc[1] = _mm512_fmadd_ps(va[2],vb[6],vc[1]);
|
|
vc[1] = _mm512_fmadd_ps(va[3],vb[7],vc[1]);
|
|
_mm512_store_ps(&C[i*N+j],vc[0]);
|
|
_mm512_store_ps(&C[i*N+j+VECDATA_SIZE],vc[1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
|
|
int _num_threads, int _mpi_rank, int _mpi_world_size) {
|
|
A = _A, B = _B, C = _C;
|
|
M = _M, N = _N, K = _K;
|
|
num_threads = _num_threads, mpi_rank = _mpi_rank,
|
|
mpi_world_size = _mpi_world_size;
|
|
|
|
// TODO: parallelize & optimize matrix multiplication on multi-node
|
|
// You must allocate & initialize A, B, C for non-root processes
|
|
|
|
// FIXME: for now, only root process runs the matrix multiplication.
|
|
MPI_Request request;
|
|
MPI_Status status;
|
|
slice = M / mpi_world_size;
|
|
si = mpi_rank * slice;
|
|
ei = (mpi_rank + 1) * slice;
|
|
if (mpi_rank == mpi_world_size - 1) ei = M;
|
|
|
|
|
|
if (mpi_rank != 0)
|
|
{
|
|
//timer_start(mpi_rank);
|
|
alloc_mat(&A,ei-si,K);
|
|
alloc_mat(&B,K,N);
|
|
alloc_mat(&C,ei-si,N);
|
|
zero_mat(C,ei-si,N);
|
|
//double allocTime = timer_stop(mpi_rank);
|
|
//printf("[%d] %f sec\n", mpi_rank, allocTime);
|
|
}
|
|
|
|
if (mpi_rank == 0)
|
|
{
|
|
for (int i = 1; i < mpi_world_size; i++)
|
|
{
|
|
int siTmp = i*slice;
|
|
int eiTmp = (i+1)*slice;
|
|
if (i == mpi_world_size - 1) eiTmp = M;
|
|
MPI_Isend(A+siTmp*K, (eiTmp-siTmp)*K, MPI_FLOAT, i, 0, MPI_COMM_WORLD, &request);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MPI_Irecv(A, (ei-si)*K, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
|
|
}
|
|
if (mpi_world_size > 1)
|
|
{
|
|
MPI_Wait(&request, &status);
|
|
MPI_Bcast(B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD);
|
|
}
|
|
|
|
mat_mul_omp();
|
|
if (mpi_rank == 0)
|
|
{
|
|
for (int i = 1; i < mpi_world_size; i++)
|
|
{
|
|
int siTmp = i*slice;
|
|
int eiTmp = (i+1)*slice;
|
|
if (i == mpi_world_size - 1) eiTmp = M;
|
|
MPI_Irecv(C+siTmp*N, (eiTmp-siTmp)*N, MPI_FLOAT, i, 0, MPI_COMM_WORLD, &request);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MPI_Isend(C, (ei-si)*N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
|
|
}
|
|
if (mpi_world_size > 1) MPI_Wait(&request, &status);
|
|
if (mpi_rank != 0)
|
|
{
|
|
free(A);
|
|
free(B);
|
|
free(C);
|
|
}
|
|
}
|