chundoong-lab-ta/SamsungDS22/submissions/HW6/ih0503.choo/mat_mul.cu

173 lines
5.2 KiB
Plaintext

#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
#define THREADS_PER_BLOCK 32
#define WPT 8
#define RTS 4
int num_devices = 0;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
int row = threadIdx.x;
int col = threadIdx.y;
int global_row = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x;
int global_col = THREADS_PER_BLOCK * blockIdx.y + threadIdx.y;
__shared__ float Asub[THREADS_PER_BLOCK][THREADS_PER_BLOCK];
__shared__ float Bsub[THREADS_PER_BLOCK][THREADS_PER_BLOCK];
int q = K / THREADS_PER_BLOCK;
int r = K % THREADS_PER_BLOCK;
if(r != 0)
q = q + 1;
float temp[WPT];
for (int w = 0; w < WPT; w++)
temp[w] = 0.0f;
for (int t = 0; t < q; t++) {
for (int w = 0; w < WPT; w++) {
int t_row = THREADS_PER_BLOCK * t + row;
int t_col = THREADS_PER_BLOCK * t + col;
if (t_col < K && (global_row + (w * RTS)) < M)
Asub[row + w * RTS][col] = A[(global_row + (w * RTS))* K + t_col];
else
Asub[row + w * RTS][col] = 0;
if ((t_row + (w * RTS)) < K && global_col < N)
Bsub[row + w * RTS][col] = B[(t_row + (w * RTS))* N + global_col];
else
Bsub[row + w * RTS][col] = 0;
}
__syncthreads();
for (int k = 0; k < THREADS_PER_BLOCK; k++) {
for (int w = 0; w < WPT; w++) {
temp[w] += Asub[row + (w * RTS)][k] * Bsub[k][col];
}
}
__syncthreads();
}
for (int w = 0; w < WPT; w++) {
if (global_row + (w * RTS) >= M || global_col >= N) {
return;
}
C[(global_row + (w * RTS)) * N + global_col] = temp[w];
}
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
int tpb = ((THREADS_PER_BLOCK + WPT - 1) / WPT);
int ptb = (((Mend[i] - Mbegin[i]) + WPT - 1) / WPT);
dim3 blockDim(tpb, THREADS_PER_BLOCK, 1);
dim3 gridDim(((ptb + tpb - 1) / tpb), ((N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK), 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], (Mend[i] - Mbegin[i]), N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}