chundoong-lab-ta/SamsungDS22/submissions/HW6/scsc.lee/mat_mul.cu

182 lines
5.3 KiB
Plaintext

#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
#define TS 32
#define WPT 8
#define RTS TS/WPT
int num_devices = 0;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
// Thread identifiers
const int row = threadIdx.x;
const int col = threadIdx.y;
const int globalRow = (blockDim.x*WPT) * blockIdx.x + threadIdx.x;
const int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
// Local memory to fit a tile of TS*TS elements of A and B
__shared__ float Asub[TS][TS];
__shared__ float Bsub[TS][TS];
// Initialise the accumulation array
float intermediateVal[WPT];
for(int w = 0; w < WPT; w++){
intermediateVal[w] = 0.0f;
}
// Loop over all tiles
int numTiles;
if(K % TS == 0){
numTiles = K / TS;
}
else{
numTiles = K / TS + 1;
}
for(int t = 0; t < numTiles; t++){
for(int w = 0; w < WPT; w++) {
const int tiledRow = TS * t + row;
const int tiledCol = TS * t + col;
if( (globalRow + w * RTS) < M && tiledCol < K ){
Asub[row + w * RTS][col] = A[(globalRow + w * RTS) * K + tiledCol];
}
else{
Asub[row + w * RTS][col] = 0.0f;
}
if( (tiledRow + w * RTS) < K && globalCol < N ){
Bsub[row + w * RTS][col] = B[(tiledRow + w * RTS) * N + globalCol];
}
else{
Bsub[row + w * RTS][col] = 0.0f;
}
}
// Synchronise to make sure the tile is loaded
__syncthreads();
// Perform the computation
for(int k = 0; k < TS; k++){
for(int w = 0; w < WPT; w++){
intermediateVal[w] += Asub[row + w * RTS][k] * Bsub[k][col];
}
}
// Synchronise before loading the next tile
__syncthreads();
}
for(int w = 0; w < WPT; w++){
if( (globalRow + w * RTS) < M && globalCol < N){
C[(globalRow + w * RTS) * N + globalCol] = intermediateVal[w];
}
}
}
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
static int split_M[MAX_NUM_GPU];
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
dim3 gridDim(((Mend[i] - Mbegin[i]+TS-1)/TS), (N+TS-1)/TS, 1);
dim3 blockDim(TS/WPT, TS, 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], split_M[i], N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
}
// Set GPU buffers
for (int i = 0; i < num_devices; ++i) {
split_M[i] = Mend[i] - Mbegin[i];
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}