114 lines
3.3 KiB
C++
114 lines
3.3 KiB
C++
#include "convolution.h"
|
|
#include "util.h"
|
|
#include <mpi.h>
|
|
#include <stdio.h>
|
|
#include <omp.h>
|
|
|
|
static float *input, *output, *filter;
|
|
static int N, C, H, W;
|
|
static int K, R, S;
|
|
static int OH, OW;
|
|
static int pad;
|
|
static int dilation;
|
|
static int stride;
|
|
static int mpi_rank, mpi_world_size;
|
|
|
|
|
|
|
|
int min(int a, int b) { return a < b ? a : b; }
|
|
|
|
void compute_conv(int is, int ie) {
|
|
#pragma omp parallel for num_threads(100) collapse(3) schedule(dynamic)
|
|
for (int n = is; n < ie; ++n) {
|
|
for (int k = 0; k < K; ++k) {
|
|
for (int oh = 0; oh < OH; ++oh) {
|
|
for (int ow = 0; ow < OW; ++ow) {
|
|
float o = 0.f;
|
|
for (int c = 0; c < C; ++c) {
|
|
for (int r = 0; r < R; ++r) {
|
|
for (int s = 0; s < S; ++s) {
|
|
int h = oh * stride - pad + r * dilation;
|
|
int w = ow * stride - pad + s * dilation;
|
|
if (h < 0 || h >= H || w < 0 || w >= W) continue;
|
|
float i = input[n * C * H * W + c * H * W + h * W + w];
|
|
float f = filter[k * C * R * S + c * R * S + r * S + s];
|
|
o += i * f;
|
|
}
|
|
}
|
|
}
|
|
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void convolution(float *_input, float *_output, float *_filter, int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
|
|
input = _input;
|
|
output = _output;
|
|
filter = _filter;
|
|
|
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
|
|
|
if (mpi_world_size > 1){
|
|
// Calculate is and ie redundantly on every processes
|
|
int is[mpi_world_size], ie[mpi_world_size];
|
|
for (int i = 0; i < mpi_world_size; i++) {
|
|
is[i] = N / mpi_world_size * i;
|
|
ie[i] = N / mpi_world_size * (i + 1);
|
|
}
|
|
ie[mpi_world_size - 1] = N;
|
|
|
|
if (mpi_rank != 0) {
|
|
alloc_tensor(&input, N, C, H, W);
|
|
alloc_tensor(&output, N, K, OH, OW);
|
|
alloc_tensor(&filter, K, C, R, S);
|
|
}
|
|
|
|
// Scatter A
|
|
if (mpi_rank == 0) {
|
|
for (int i = 1; i < mpi_world_size; i++) {
|
|
MPI_Send(input+is[i]*C*H*W, (ie[i]-is[i])*C*H*W, MPI_FLOAT, i, 0, MPI_COMM_WORLD);
|
|
}
|
|
}
|
|
else {
|
|
MPI_Recv(input+is[mpi_rank]*C*H*W, (ie[mpi_rank]-is[mpi_rank])*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, nullptr);
|
|
}
|
|
|
|
// Broadcast B
|
|
MPI_Bcast(filter, K*C*R*S, MPI_FLOAT, 0, MPI_COMM_WORLD);
|
|
compute_conv(is[mpi_rank], ie[mpi_rank]);
|
|
|
|
// Gather C
|
|
if (mpi_rank == 0) {
|
|
for (int i = 1; i < mpi_world_size; i++) {
|
|
MPI_Recv(output+is[i]*K*OH*OW, (ie[i]-is[i])*K*OH*OW, MPI_FLOAT, i, 0, MPI_COMM_WORLD, nullptr);
|
|
}
|
|
}
|
|
else {
|
|
MPI_Send(output+is[mpi_rank]*K*OH*OW, (ie[mpi_rank]-is[mpi_rank])*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
|
|
}
|
|
}
|
|
else {
|
|
compute_conv(0,N);
|
|
}
|
|
}
|
|
|
|
|
|
void convolution_init(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
|
|
N = _N; C = _C; H = _H; W = _W;
|
|
K = _K; R = _R; S = _S;
|
|
pad = _pad;
|
|
dilation = _dilation;
|
|
stride = _stride;
|
|
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
|
}
|
|
|
|
|
|
void convolution_final(int _N, int _C, int _H, int _W, int _K, int _R, int _S, int _pad, int _dilation, int _stride) {
|
|
}
|
|
|