chundoong-lab-ta/SamsungDS22/submissions/HW4/c.w.son/mat_mul.cpp

233 lines
7.8 KiB
C++

#include "mat_mul.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
#include "util.h"
#define MASTER_TO_SLAVE_TAG 1 //tag for messages sent from master to slaves
#define SLAVE_TO_MASTER_TAG 4 //tag for messages sent from slaves to master
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
MPI_Request request;
MPI_Status status;
static int min(int x, int y) {
return x < y ? x : y;
}
/*
Node Num 1
[rank 0] Avg. time: 3.782508 sec
[rank 0] Avg. throughput: 290.683216 GFLOPS
Node Num 2
[rank 0] Avg. time: 2.597820 sec
[rank 0] Avg. throughput: 423.243954 GFLOPS
Node Num 3
[rank 0] Avg. time: 1.980322 sec
[rank 0] Avg. throughput: 555.218642 GFLOPS
Node Num 4
[rank 0] Avg. time: 1.788115 sec
[rank 0] Avg. throughput: 614.899922 GFLOPS
*/
static void mat_mul_omp(int start_m, int end_m) {
// TODO: parallelize & optimize matrix multiplication
// Use num_threads per node
/*
#pragma omp parallel for num_threads(num_threads) schedule(guided, 1)
for (int i = start_m; i < end_m; ++i) {
for (int k = 0; k < K; ++k) {
float ar = A[i * K + k];
for (int j = 0; j < N; ++j){
//printf("thread %d, i (%d) , k (%d), j(%d) \n", omp_get_thread_num(), i, k, j );
C[i * N + j] += ar * B[k * N + j];
}
}
}
*/
int ITILESIZE = 16;
int JTILESIZE = 128;
int KTILESIZE = 128;
if(K == 8192 && N ==8192 && M == 8192){
ITILESIZE = 32;
JTILESIZE = 1024;
KTILESIZE = 1024;
}
int size = (end_m - start_m);
#pragma omp parallel num_threads(num_threads) firstprivate(ITILESIZE) firstprivate(JTILESIZE) firstprivate(KTILESIZE)
{
int tid = omp_get_thread_num();
// int is = M / num_threads * tid + min(tid, M % num_threads);
// int ie = M / num_threads * (tid + 1) + min(tid + 1, M % num_threads);
int is = start_m + ((size / num_threads) * tid);
int ie;
if(tid == (num_threads-1)){
ie = start_m + ((size / num_threads) * (tid + 1) + (size % num_threads));
}
else{
ie = start_m + ((size / num_threads) * (tid + 1));
}
//printf("tid (%d) size(%d) is(%d), ie(%d)\n", tid, size, is, ie);
for (int ii = is; ii < ie; ii += ITILESIZE) {
for (int jj = 0; jj < N; jj += JTILESIZE) {
for (int kk = 0; kk < K; kk += KTILESIZE) {
for (int k = kk; k < min(K, kk + KTILESIZE); k++) {
for (int i = ii; i < min(ie, ii + ITILESIZE); i++) {
float ar = A[i * K + k];
for (int j = jj; j < min(N, jj + JTILESIZE); j+=1) {
C[i * N + j] += ar * B[k * N + j];
}
}
}
}
}
}
}
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
// FIXME: for now, only root process runs the matrix multiplication.
// if (mpi_rank == 0)
// mat_mul_omp();
int size_m;
int start_m;
int end_m;
int start_m_no0;
int end_m_no0;
if(mpi_rank == 0){
for(int node=0; node< mpi_world_size; node++){
size_m = M / (mpi_world_size);
start_m = (node)*size_m;
if(node == 0) start_m_no0 = start_m;
if(((node+1) == mpi_world_size) && ((M%(mpi_world_size)) != 0)){
end_m = M;
if(node == 0) end_m_no0 = end_m;
}
else{
end_m = start_m + size_m;
if(node == 0) end_m_no0 = end_m;
}
if(node >= 1){
//send the low bound first blocking, to the intended slave
MPI_Send(&start_m, 1, MPI_INT, node, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD);
//printf("SEND start_m (%d) to (%d)\n", start_m, node);
//next send the upper bound blocking, to the intended slave
MPI_Send(&end_m, 1, MPI_INT, node, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD);
//printf("SEND end_m (%d) to (%d)\n", end_m, node);
//finally send the allocated row portion of [A] blocking, to the intended slave
int sizeBuf = (end_m - start_m) * K;
//printf("SEND A Buff Len : (%d) to (%d)\n", sizeBuf, node);
MPI_Send(&A[start_m*K], sizeBuf, MPI_FLOAT, node, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD);
//printf("SEND A size (%d) to (%d)\n", sizeBuf, node);
//print_mat(&A[start_m], (end_m - start_m), K);
}
}
}
else{
alloc_mat(&A, M, K);
//receive low bound from the master
MPI_Recv(&start_m, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD, &status);
//printf("RECV start_m (%d) at (%d)\n", start_m, mpi_rank);
//next receive upper bound from the master
MPI_Recv(&end_m, 1, MPI_INT, 0, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD, &status);
//printf("RECV end_m (%d) at (%d)\n", end_m, mpi_rank);
//finally receive row portion of [A] to be processed from the master
int sizeBuf = (end_m - start_m) * K;
//printf("RECV A Buff Len : %d \n", sizeBuf);
MPI_Recv(&A[start_m*K], sizeBuf, MPI_FLOAT, 0, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD, &status);
//printf("RECV A size (%d) at (%d)\n", sizeBuf, mpi_rank);
//print_mat(&A[start_m], (end_m - start_m), K);
}
//MPI_Barrier(MPI_COMM_WORLD);
if(mpi_rank > 0){
alloc_mat(&B, K, N);
}
MPI_Bcast(&B[0], K*N, MPI_FLOAT, 0, MPI_COMM_WORLD);
//printf("Bcast B (%d) to (%d) \n", K*N, mpi_rank);
//print_mat(&B[0], K, N);
if(mpi_rank > 0){
alloc_mat(&C, M, N);
}
MPI_Bcast(&C[0], M*N, MPI_FLOAT, 0, MPI_COMM_WORLD);
//printf("Bcast C (%d) to (%d) \n", M*N, mpi_rank);
//print_mat(&C[0], M, N);
MPI_Barrier(MPI_COMM_WORLD);
if(mpi_rank == 0){
mat_mul_omp(start_m_no0, end_m_no0);
}
else{
mat_mul_omp(start_m, end_m);
if(mpi_rank >= 1){
//send the low bound first blocking, to the intended slave
MPI_Send(&start_m, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD);
//printf("SEND C start_m (%d) to (%d)\n", start_m, 0);
//next send the upper bound blocking, to the intended slave
MPI_Send(&end_m, 1, MPI_INT, 0, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD);
//printf("SEND C end_m (%d) to (%d)\n", end_m, 0);
//finally send the allocated row portion of [A] blocking, to the intended slave
int sizeBuf = (end_m - start_m) * N;
//printf("SEND C Buff Len : (%d) to (%d)\n", sizeBuf, 0);
MPI_Send(&C[start_m*N], sizeBuf, MPI_FLOAT, 0, SLAVE_TO_MASTER_TAG + 2, MPI_COMM_WORLD);
//printf("SEND C size (%d) to (%d)\n", sizeBuf, 0);
//print_mat(&C[start_m], (end_m - start_m), N);
}
}
if(mpi_rank == 0){
for (int node = 1; node < mpi_world_size; node++) {// untill all slaves have handed back the processed data
//receive low bound from a slave
MPI_Recv(&start_m, 1, MPI_INT, node, SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD, &status);
//receive upper bound from a slave
MPI_Recv(&end_m, 1, MPI_INT, node, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD, &status);
//receive processed data from a slave
MPI_Recv(&C[start_m*N], (end_m - start_m) * N, MPI_FLOAT, node, SLAVE_TO_MASTER_TAG + 2, MPI_COMM_WORLD, &status);
}
}
}