chundoong-lab-ta/SamsungDS22/submissions/HW4/changju1.lee/mat_mul.cpp

131 lines
3.7 KiB
C++

#include "mat_mul.h"
#include "util.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
#define HOST 0
#define ITILESIZE 16
#define JTILESIZE 2048
#define KTILESIZE 2048
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
static int rows;
static int start_node;
static int min(int x, int y) {
return x < y ? x : y;
}
static void mat_mul_omp() {
// TODO: parallelize & optimize matrix multiplication
// Use num_threads per node
int is[num_threads];
int ie[num_threads];
for (int i=0; i < num_threads; i++){
is[i] = rows / num_threads * i + min(i, rows % num_threads);
ie[i] = rows / num_threads * (i + 1) + min(i + 1, rows % num_threads);
}
int tid;
int ii, jj, kk, i, j, k;
omp_set_num_threads(num_threads);
#pragma omp parallel shared(A, B, C, M, N, K, num_threads) private(ii, jj, kk, k, i, j, tid)
{
tid = omp_get_thread_num();
for (ii = is[tid]; ii < ie[tid]; ii += ITILESIZE) {
for (jj = 0; jj < N; jj += JTILESIZE) {
for (kk = 0; kk < K; kk += KTILESIZE) {
for (k = kk; k < min(K, kk + KTILESIZE); k++) {
for (i = ii; i < min(ie[tid], ii + ITILESIZE); i++) {
float ar = A[i * K + k];
for (j = jj; j < min(N, jj + JTILESIZE); j++) {
C[i * N + j] += ar * B[k * N + j];
}
}
}
}
}
}
}
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
MPI_Request request;
MPI_Status status;
int tag1 = 1001;
int tag2 = 1002;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
// FIXME: for now, only root process runs the matrix multiplication.
int slice_node = M / mpi_world_size;
int start[mpi_world_size] = {0};
int end[mpi_world_size] = {0};
for (int i = 0; i < mpi_world_size; i++) { // i is the node pointer
start[i] = i * slice_node;
end[i] = (i == mpi_world_size - 1) ? M : (i + 1) * slice_node;
}
if (mpi_rank == 0) {
for (int node = 1; node < mpi_world_size; node++) {
rows = end[node] - start[node];
start_node = start[node];
MPI_Isend(&start_node, 1, MPI_INT, node, tag1, MPI_COMM_WORLD, &request);
MPI_Isend(&rows, 1, MPI_INT, node, tag1, MPI_COMM_WORLD, &request);
MPI_Isend(&A[start_node*K], rows*K, MPI_FLOAT, node, tag1, MPI_COMM_WORLD, &request);
MPI_Isend(B, K*N, MPI_FLOAT, node, tag1, MPI_COMM_WORLD, &request);
}
rows = slice_node;
mat_mul_omp();
for (int node = 1; node < mpi_world_size; node++) {
MPI_Recv(&start_node, 1, MPI_INT, node, tag2, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, node, tag2, MPI_COMM_WORLD, &status);
MPI_Recv(&C[start_node*N], rows*N, MPI_INT, node, tag2, MPI_COMM_WORLD, &status);
}
}
else {
alloc_mat(&A, slice_node + mpi_world_size - 1, K);
alloc_mat(&B, K, N);
alloc_mat(&C, slice_node + mpi_world_size - 1, N);
zero_mat(C, slice_node + mpi_world_size - 1, N);
MPI_Recv(&start_node, 1, MPI_INT, HOST, tag1, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, HOST, tag1, MPI_COMM_WORLD, &status);
MPI_Recv(A, rows*K, MPI_FLOAT, HOST, tag1, MPI_COMM_WORLD, &status);
MPI_Recv(B, K*N, MPI_FLOAT, HOST, tag1, MPI_COMM_WORLD, &status);
mat_mul_omp();
MPI_Isend(&start_node, 1, MPI_INT, HOST, tag2, MPI_COMM_WORLD, &request);
MPI_Isend(&rows, 1, MPI_INT, HOST, tag2, MPI_COMM_WORLD, &request);
MPI_Isend(C, rows*N, MPI_FLOAT, HOST, tag2, MPI_COMM_WORLD, &request);
}
}