chundoong-lab-ta/SamsungDS22/submissions/HW4/inseok.bae/mat_mul.cpp

110 lines
4.0 KiB
C++

#include "mat_mul.h"
#include "util.h"
#include <cstdio>
#include <cstdlib>
#include <omp.h>
#include <mpi.h>
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
#define II_BLOCK 16
#define KK_BLOCK 32
#define JJ_BLOCK 2048
static void mat_mul_omp() {
// TODO: parallelize & optimize matrix multiplication
int node_slice = (M/mpi_world_size);
int tid,i,ii,j,jj,k,kk,start,end;
int using_threads = num_threads;
int slice = (M/mpi_world_size) / using_threads;
omp_set_num_threads(using_threads);
#pragma omp parallel private(tid,i,ii,kk,k,j,jj,start,end)
{
tid = omp_get_thread_num();
start = mpi_rank * node_slice + slice * tid;
end = (tid == using_threads - 1)?(mpi_rank == mpi_world_size - 1 ? M : (mpi_rank+1)*node_slice) : mpi_rank * node_slice+(tid+1)*slice;
//printf("mpi_rank : %d, tid : %d, start : %d, end : %d\n", mpi_rank, tid, start, end);
//printf("mpi_rank : %d, tid : %d, start : %d, end : %d\n", mpi_rank, tid, start, end);
for (jj = 0; jj < N; jj += JJ_BLOCK) {
for (kk = 0; kk < K; kk += KK_BLOCK) {
for (ii = start; ii < end; ii += II_BLOCK) {
for (i = ii; i < (ii+II_BLOCK < end ? ii+II_BLOCK : end); ++i) {
for(k = kk; k < (kk+KK_BLOCK < K ? kk+KK_BLOCK : K); ++k) {
for (j = jj; j < (jj+JJ_BLOCK < N ? jj+JJ_BLOCK : N); ++j) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
}
}
}
}
}
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
// FIXME: for now, only root process runs the matrix multiplication.
//int offset = size_by_node * mpi_rank;
MPI_Status status;
if (mpi_rank == 0){
//timer_start(5);
for(int i = 1; i <= mpi_world_size-1; i++){
MPI_Send(&A[i * K*(M/mpi_world_size)], (i==mpi_world_size-1)?K*M - i*K*(M/mpi_world_size):K*(M/mpi_world_size), MPI_FLOAT, i, 1, MPI_COMM_WORLD);
MPI_Send(&B[0], K*N, MPI_FLOAT, i, 1, MPI_COMM_WORLD);
MPI_Send(&C[i * N*(M/mpi_world_size)], (i==mpi_world_size-1)?N*M - i*N*(M/mpi_world_size):N*(M/mpi_world_size), MPI_FLOAT, i, 1, MPI_COMM_WORLD);
}
//double r0_time = timer_stop(5);
//printf("r0_time before mat_mul : %f sec\n", r0_time);
//timer_start(5);
mat_mul_omp();
//r0_time = timer_stop(5);
//printf("0_time mat_mul : %f sec\n", r0_time);
for(int i=1; i<= mpi_world_size-1; i++){
MPI_Recv(&C[i * N*(M/mpi_world_size)], (i == mpi_world_size-1)?N*M - mpi_rank *N*(M/mpi_world_size):N*(M/mpi_world_size), MPI_FLOAT, i, 1, MPI_COMM_WORLD, &status);
}
}
else{
double * slave_rank = (double *)malloc((mpi_world_size) * sizeof(double));
timer_start(mpi_rank);
alloc_mat(&A, M, K);
alloc_mat(&B, K, N);
alloc_mat(&C, M, N);
int A_arr_offset = mpi_rank*K*(M/mpi_world_size);
int C_arr_offset = mpi_rank*N*(M/mpi_world_size);
MPI_Recv(&A[A_arr_offset], (mpi_rank==mpi_world_size-1)?K*M - mpi_rank*K*(M/mpi_world_size):K*(M/mpi_world_size), MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status);
MPI_Recv(&B[0], K*N, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status);
MPI_Recv(&C[C_arr_offset], (mpi_rank==mpi_world_size-1)?N*M - mpi_rank*N*(M/mpi_world_size):N*(M/mpi_world_size), MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status);
slave_rank[mpi_rank]=timer_stop(mpi_rank);
//printf("%d time before mat_mul : %f sec\n", mpi_rank, slave_rank[mpi_rank]);
timer_start(mpi_rank);
mat_mul_omp();
slave_rank[mpi_rank]=timer_stop(mpi_rank);
//printf("%d time mat_mul : %f sec\n", mpi_rank, slave_rank[mpi_rank]);
MPI_Send(&C[C_arr_offset], (mpi_rank == mpi_world_size-1)?N*M - mpi_rank *N*(M/mpi_world_size):N*(M/mpi_world_size), MPI_FLOAT, 0, 1, MPI_COMM_WORLD);
}
}