chundoong-lab-ta/SamsungDS22/submissions/HW4/jinin.so/mat_mul.cpp

141 lines
3.6 KiB
C++

#include "mat_mul.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
#include "util.h"
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
static int min(int x, int y) {
return x < y ? x : y;
}
#define ITILESIZE (32)
#define JTILESIZE (1024)
#define KTILESIZE (1024)
static void mat_mul_omp() {
// TODO: parallelize & optimize matrix multiplication
int i,j,k,ii,jj,kk;
float ar;
omp_set_num_threads(num_threads);
int slaveTaskCount = mpi_world_size;
int offset = M / slaveTaskCount * (mpi_rank) + min(mpi_rank, M % slaveTaskCount);
int rows = M / slaveTaskCount * (mpi_rank+1) + min(mpi_rank+1, M % slaveTaskCount) - offset;
#pragma omp parallel for private(i,j,k,ii,jj,kk,ar) shared(A,B,C)//schedule(dynamic,50) collapse(2)
for (ii = 0; ii <rows ; ii += ITILESIZE) {
for (jj = 0; jj < N; jj += JTILESIZE) {
for (kk = 0; kk < K; kk += KTILESIZE) {
for (k = kk; k < min(K,kk + KTILESIZE); k++) {
for (i = ii; i < min(rows,ii + ITILESIZE); i++) {
ar = A[i * K + k];
for (j = jj; j < min(N,jj + JTILESIZE); j+=1) {
C[i * N + j] += ar * B[k * N + j];
//printf("%f %f %f\n",C[i * N + j],ar,B[k * N + j]);
}
}
}
}
}
}
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
// FIXME: for now, only root process runs the matrix multiplication.
int rows;
int source,dest;
int slaveTaskCount = mpi_world_size;
int offset=0;
int processId;
MPI_Status status;
MPI_Request request1,request2;
processId = mpi_rank;
if (processId == 0) {
for (dest=1; dest <= slaveTaskCount-1; dest++)
{
offset = M / slaveTaskCount * (dest) + min(dest, M % slaveTaskCount);
rows = M / slaveTaskCount * (dest+1) + min(dest+1, M % slaveTaskCount) - offset;
MPI_Isend(&offset, 1, MPI_INT, dest, 1, MPI_COMM_WORLD,&request1);
MPI_Isend(&rows, 1, MPI_INT, dest, 1, MPI_COMM_WORLD,&request2);
MPI_Isend(&A[offset*K], rows*K, MPI_FLOAT,dest,1, MPI_COMM_WORLD,&request1);
MPI_Isend(B, K*N, MPI_FLOAT, dest, 1, MPI_COMM_WORLD,&request2);
}
mat_mul_omp();
for (int i = 1; i <= slaveTaskCount-1; i++)
{
source = i;
MPI_Recv(&offset, 1, MPI_INT, source, 2, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, 2, MPI_COMM_WORLD, &status);
MPI_Recv(&C[offset*N], rows*N, MPI_FLOAT, source, 2, MPI_COMM_WORLD, &status);
}
}
if (processId > 0) {
source = 0;
MPI_Recv(&offset, 1, MPI_INT, source, 1, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, 1, MPI_COMM_WORLD, &status);
alloc_mat(&A, rows, K);
alloc_mat(&B, K, N);
alloc_mat(&C, rows, N);
MPI_Recv(A, rows*K, MPI_FLOAT, source, 1, MPI_COMM_WORLD, &status);
MPI_Recv(B, K*N, MPI_FLOAT, source, 1, MPI_COMM_WORLD, &status);
zero_mat(C,rows,N);
mat_mul_omp();
MPI_Send(&offset, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Send(C, rows*N, MPI_FLOAT, 0, 2, MPI_COMM_WORLD);
}
}