chundoong-lab-ta/SamsungDS22/submissions/HW4/seong81.kim/mat_mul.cpp

152 lines
5.3 KiB
C++

#include "mat_mul.h"
#include "util.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
#define ITILESIZE (32)
#define JTILESIZE (1024)
#define KTILESIZE (1024)
#define MASTER_TO_SLAVE_TAG 0
#define SLAVE_TO_MASTER_TAG 10
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
MPI_Status status0; // store status of a MPI_Recv
MPI_Status status1; // store status of a MPI_Recv
MPI_Status status2; // store status of a MPI_Recv
MPI_Request request0; //capture request of a MPI_Isend
MPI_Request request1; //capture request of a MPI_Isend
MPI_Request request2; //capture request of a MPI_Isend
int inline func_min(int a, int b){
if (a > b) return b ;
else return a ;
}
static void mat_mul_omp(int high) {
omp_set_num_threads(num_threads);
#pragma omp parallel for schedule(static)
for (int ii = 0; ii < high; ii += ITILESIZE) {
for (int jj = 0; jj < N; jj += JTILESIZE) {
for (int kk = 0; kk < K; kk += KTILESIZE) {
for (int k = kk; k < func_min(K, kk + KTILESIZE); k++) {
for (int i = ii; i < func_min(high, ii + ITILESIZE); i++) {
float ar = A[i * K + k];
for (int j = jj; j < func_min(N, jj + JTILESIZE); j+=1) {
C[i * N + j] += ar * B[k * N + j];
}
}
}
}
}
}
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
if (mpi_rank == 0) {
int i ;
int M_div_node ;
int real_num_node ;
int node_unit ;
int size ;
int header[2] ;
int A_base ;
int C_base ;
int low_M, high_M ;
// Compute Real number of node which works to use
M_div_node = M / mpi_world_size ;
if (M_div_node == 0) {
real_num_node = M ;
node_unit = 1 ;
} else if (M_div_node * mpi_world_size < M){
real_num_node = mpi_world_size ;
node_unit = M_div_node + 1 ;
} else {
real_num_node = mpi_world_size ;
node_unit = M_div_node ;
}
// Send index of divided A matrix
for (i = 1 ; i < real_num_node; i++){
low_M = i * node_unit ;
high_M = func_min( (low_M + node_unit), M) ;
size = high_M - low_M ;
header[0] = low_M ;
header[1] = size ;
A_base = low_M * K ;
MPI_Isend(header, 2, MPI_INT, i, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD, &request0);
MPI_Isend(&A[A_base], size * K, MPI_FLOAT, i, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD, &request1);
MPI_Isend( B , K * N, MPI_FLOAT, i, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD, &request2);
}
for (i = real_num_node; i < mpi_world_size ; i++){
header[0] = -100 ;
header[1] = -100 ;
MPI_Isend(header , 2, MPI_INT, i, MASTER_TO_SLAVE_TAG + 3, MPI_COMM_WORLD, &request0);
}
//MPI_Bcast(B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD);
// Do multiplication dedicated to Rank0
mat_mul_omp(func_min( node_unit, M));
// Receives multiplication from each worker
for (i = 1; i < real_num_node; i++) {
MPI_Recv(header, 2, MPI_INT, i, SLAVE_TO_MASTER_TAG , MPI_COMM_WORLD, &status0);
C_base = header[0] * N ;
size = header[1] * N ;
MPI_Recv(&C[C_base], size, MPI_FLOAT, i, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD, &status1);
}
}
else {
int header[2];
int size ;
MPI_Recv(header, 2, MPI_INT, 0, MASTER_TO_SLAVE_TAG, MPI_COMM_WORLD, &status0);
if (header[0] != -100) {
size = header[1];
alloc_mat(&A, size, K);
MPI_Recv(A, size * K, MPI_FLOAT, 0, MASTER_TO_SLAVE_TAG + 1, MPI_COMM_WORLD, &status1);
alloc_mat(&B, K, N);
MPI_Recv(B, K * N, MPI_FLOAT, 0, MASTER_TO_SLAVE_TAG + 2, MPI_COMM_WORLD, &status2);
//MPI_Bcast(B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD);
alloc_mat(&C, size, N);
zero_mat(C, size, N);
//timer_start(mpi_rank);
mat_mul_omp(size);
//double a=timer_stop(mpi_rank);
//printf("\n rank%d time = %f\n\n\n", mpi_rank, a);
MPI_Isend(header, 2, MPI_INT, 0, SLAVE_TO_MASTER_TAG, MPI_COMM_WORLD, &request0) ;
MPI_Isend(C , size* N, MPI_FLOAT, 0, SLAVE_TO_MASTER_TAG + 1, MPI_COMM_WORLD, &request1) ;
}
else {
MPI_Bcast(B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD);
}
}
}