chundoong-lab-ta/SamsungDS22/submissions/HW4/ss1.eom/main.cpp

154 lines
3.9 KiB
C++

#include <getopt.h>
#include <mpi.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include "mat_mul.h"
#include "util.h"
static bool print_matrix = false;
static bool validation = false;
static int M = 8, N = 8, K = 8;
static int num_threads = 1;
static int num_iterations = 1;
static int mpi_rank, mpi_world_size;
static void print_help(const char *prog_name) {
if (mpi_rank == 0) {
printf("Usage: %s [-pvh] [-t num_threads] [-n num_iterations] M N K\n",
prog_name);
printf("Options:\n");
printf(" -p : print matrix data. (default: off)\n");
printf(" -v : validate matrix multiplication. (default: off)\n");
printf(" -h : print this page.\n");
printf(" -t : number of threads (default: 1)\n");
printf(" -n : number of iterations (default: 1)\n");
printf(" M : number of rows of matrix A and C. (default: 8)\n");
printf(" N : number of columns of matrix B and C. (default: 8)\n");
printf(
" K : number of columns of matrix A and rows of B. (default: 8)\n");
}
}
static void parse_opt(int argc, char **argv) {
int c;
while ((c = getopt(argc, argv, "pvht:n:")) != -1) {
switch (c) {
case 'p':
print_matrix = true;
break;
case 'v':
validation = true;
break;
case 't':
num_threads = atoi(optarg);
break;
case 'n':
num_iterations = atoi(optarg);
break;
case 'h':
default:
print_help(argv[0]);
MPI_Finalize();
exit(0);
}
}
for (int i = optind, j = 0; i < argc; ++i, ++j) {
switch (j) {
case 0:
M = atoi(argv[i]);
break;
case 1:
N = atoi(argv[i]);
break;
case 2:
K = atoi(argv[i]);
break;
default:
break;
}
}
if (mpi_rank == 0) {
printf("Options:\n");
printf(" Problem size: M = %d, N = %d, K = %d\n", M, N, K);
printf(" Number of threads: %d\n", num_threads);
printf(" Number of iterations: %d\n", num_iterations);
printf(" Print matrix: %s\n", print_matrix ? "on" : "off");
printf(" Validation: %s\n", validation ? "on" : "off");
printf("\n");
}
}
int main(int argc, char **argv) {
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);
printf("Hello world from processor %s, rank %d out of %d\n", processor_name,
mpi_rank, mpi_world_size);
parse_opt(argc, argv);
float *A, *B, *C;
if (mpi_rank == 0) {
printf("[rank %d] Initializing matrix...\n", mpi_rank);
alloc_mat(&A, M, K);
alloc_mat(&B, K, N);
alloc_mat(&C, M, N);
rand_mat(A, M, K);
rand_mat(B, K, N);
printf("[rank %d] Initializing matrix done!\n", mpi_rank);
}
MPI_Barrier(MPI_COMM_WORLD);
double elapsed_time_sum = 0;
for (int i = 0; i < num_iterations; ++i) {
if (mpi_rank == 0) {
printf("[rank %d] Calculating...(iter=%d) ", mpi_rank, i);
fflush(stdout);
zero_mat(C, M, N);
}
MPI_Barrier(MPI_COMM_WORLD);
timer_start(0);
mat_mul(A, B, C, M, N, K, num_threads, mpi_rank, mpi_world_size);
MPI_Barrier(MPI_COMM_WORLD);
double elapsed_time = timer_stop(0);
if (mpi_rank == 0) {
printf("%f sec\n", elapsed_time);
elapsed_time_sum += elapsed_time;
}
}
if (mpi_rank == 0) {
if (print_matrix) {
printf("MATRIX A:\n");
print_mat(A, M, K);
printf("MATRIX B:\n");
print_mat(B, K, N);
printf("MATRIX C:\n");
print_mat(C, M, N);
}
if (validation) {
check_mat_mul(A, B, C, M, N, K);
}
double elapsed_time_avg = elapsed_time_sum / num_iterations;
printf("[rank %d] Avg. time: %f sec\n", mpi_rank, elapsed_time_avg);
printf("[rank %d] Avg. throughput: %f GFLOPS\n", mpi_rank,
2.0 * M * N * K / elapsed_time_avg / 1e9);
}
MPI_Finalize();
return 0;
}