chundoong-lab-ta/SamsungDS22/submissions/HW4/ym.tai/mat_mul.cpp

136 lines
3.9 KiB
C++

#include "mat_mul.h"
#include "util.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
#define min(a,b) (((a) < (b)) ? (a) : (b))
#define MAX_NUM_OF_NODES (4)
#define ITILESIZE (32)
#define JTILESIZE (1024)
#define KTILESIZE (1024)
static void mat_mul_omp(int rows) {
omp_set_num_threads(num_threads);
#pragma omp parallel shared(A, B, C, rows, N, K, num_threads)
{
int tid = omp_get_thread_num();
int is = rows / num_threads * tid + min(tid, rows % num_threads);
int ie = rows / num_threads * (tid + 1) + min(tid + 1, rows % num_threads);
for (int ii = is; ii < ie; ii += ITILESIZE) {
for (int jj = 0; jj < N; jj += JTILESIZE) {
for (int kk = 0; kk < K; kk += KTILESIZE) {
for (int k = kk; k < min(kk + KTILESIZE, K); k++) {
for (int i = ii; i < min(ii + ITILESIZE, ie); i++) {
float ar = A[i * K + k];
for (int j = jj; j < min(jj + JTILESIZE, N); j++) {
C[i * N + j] += ar * B[k * N + j];
}
}
}
}
}
}
}
return;
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
int divided_rows[MAX_NUM_OF_NODES];
int offset[MAX_NUM_OF_NODES] = {0};
int divided_row, remainder, M_new;
int tmp = 0;
MPI_Status status;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
// FIXME: for now, only root process runs the matrix multiplication.
if (mpi_rank == 0)
{
divided_row = M / mpi_world_size;
remainder = M - divided_row * mpi_world_size;
// Larger numbered nodes compute more rows
if(remainder != 0) {
for (int i = 0; i < (mpi_world_size - remainder); i++) {
divided_rows[i] = divided_row;
}
for (int i = (mpi_world_size - remainder); i < mpi_world_size; i++) {
divided_rows[i] = divided_row + 1;
}
}
else {
for (int i = 0; i < mpi_world_size; i++) {
divided_rows[i] = divided_row;
}
}
for (int i = 1; i < mpi_world_size; i++) {
tmp += divided_rows[i - 1];
offset[i] = tmp; // Starting row number divided by node
}
// Send data to other nodes (tag = 0)
for(int i = 1; i < mpi_world_size; i++) {
MPI_Send(&divided_rows[i], 1, MPI_INT, i, 0, MPI_COMM_WORLD);
MPI_Send(&K, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
MPI_Send(&N, 1, MPI_INT, i, 0, MPI_COMM_WORLD);
MPI_Send(&A[offset[i] * K], divided_rows[i] * K, MPI_FLOAT, i, 0, MPI_COMM_WORLD);
MPI_Send(B, K * N, MPI_FLOAT, i, 0, MPI_COMM_WORLD);
}
// Calculate mat mul for root node part
mat_mul_omp(divided_rows[0]);
// Waiting until the each nodes sent their result (tag = 1)
for(int i = 1; i < mpi_world_size; i++) {
MPI_Recv(&C[offset[i] * N], divided_rows[i] * N, MPI_FLOAT, i, 1, MPI_COMM_WORLD, &status);
}
}
else
{
// Receive data from root node (tag = 0)
MPI_Recv(&M_new, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(&K, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(&N, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
// allocate for matrix
alloc_mat(&A, M_new, K);
alloc_mat(&B, K, N);
alloc_mat(&C, M_new, N);
// Receive divied A mat & B mat
MPI_Recv(A, M_new * K, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(B, K * N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
mat_mul_omp(M_new);
// Send result to root node (tag = 1)
MPI_Send(C, M_new * N, MPI_FLOAT, 0, 1, MPI_COMM_WORLD);
}
}