chundoong-lab-ta/SamsungDS22/submissions/HW4/youngsik.eom/mat_mul.cpp

171 lines
5.4 KiB
C++

#include "mat_mul.h"
#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <omp.h>
#include "util.h"
static float *A, *B, *C;
static int M, N, K;
static int num_threads;
static int mpi_rank, mpi_world_size;
/*static void mat_mul_omp2() {
// TODO: parallelize & optimize matrix multiplication
// Use num_threads per node
#pragma omp parallel for
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
}
}*/
#define min(a,b) (a>b?b:a)
static void mat_mul_omp() {
float Aik;
int bs_k = 32;
int bs_j = 2048;
//omp_set_num_threads(num_threads);
for (int kk = 0; kk < K; kk += bs_k)
for (int jj = 0; jj < N; jj += bs_j)
#pragma omp parallel for num_threads(num_threads)
for (int i = 0; i < M; i++)
for (int k = kk; k < min(kk + bs_k, K); k++) {
Aik = A[i*K + k];
//for (int j =0; j < N; j++)
for (int j = jj; j < min(jj + bs_j, N); j++)
C[i*N + j + 0] += Aik * B[k*N + j + 0];
//for (int j =0; j < (N/8)*8; j+=8) {
// C[i*N + j + 0] += Aik * B[k*N + j + 0];
// C[i*N + j + 1] += Aik * B[k*N + j + 1];
// C[i*N + j + 2] += Aik * B[k*N + j + 2];
// C[i*N + j + 3] += Aik * B[k*N + j + 3];
// C[i*N + j + 4] += Aik * B[k*N + j + 4];
// C[i*N + j + 5] += Aik * B[k*N + j + 5];
// C[i*N + j + 6] += Aik * B[k*N + j + 6];
// C[i*N + j + 7] += Aik * B[k*N + j + 7];
//}
//for (; j < N; j++)
// C[i*N + j] += Aik * B[k*N + j];
}
return;
}
/*static void mat_mul_omp() {
// TODO: parallelize & optimize matrix multiplication
int bs = 64;
for (int jj = 0; jj < K; jj += bs)
for (int kk = 0; kk < K; kk += bs)
for (int i = 0; i < M; ++i)
#pragma omp parallel for
for (int j =jj; j < min(jj+bs, N); j++)
for (int k = kk; k < min(kk+bs, K); k++)
//C[i*N + j + 0] += Aik * B[k*N + j + 0];
C[i*N + j] += A[i*K + k] * B[k*N + j];
return;
}*/
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
int _num_threads, int _mpi_rank, int _mpi_world_size) {
A = _A, B = _B, C = _C;
M = _M, N = _N, K = _K;
num_threads = _num_threads, mpi_rank = _mpi_rank,
mpi_world_size = _mpi_world_size;
// TODO: parallelize & optimize matrix multiplication on multi-node
// You must allocate & initialize A, B, C for non-root processes
int default_div_size = M/mpi_world_size;
MPI_Status status;
MPI_Request request;
if(mpi_rank == 0){
//1. Send part of A and B to each node
for(int target_rank = 1; target_rank < mpi_world_size; target_rank++){
int div_start, div_size;
div_start = target_rank * default_div_size;
div_size = default_div_size;
if(target_rank == (mpi_world_size - 1))
div_size += M - (default_div_size * mpi_world_size);
//printf("send. rank=%d, div_start=%d, div_size=%d\n", target_rank, div_start, div_size);
//Send part of array A
//MPI_Send(A + (div_start * K), div_size * K, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD);
MPI_Isend(A + (div_start * K), div_size * K, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &request);
//MPI_Isend(B, K * N, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &request);
}
MPI_Bcast(B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD);
//MPI_Wait(&request, &status);
//2. Calc rank0 mat mul
int original_M = M;
M = default_div_size; // make mat_mal compute the first division of M.
//printf("main. my rank=%d, div_size=%d\n", mpi_rank, default_div_size);
//timer_start(1);
mat_mul_omp();
//double elapsed_time = timer_stop(1);
//printf("[rank %d] time: %f sec\n", mpi_rank, elapsed_time);
M = original_M; // Restore M
//3. Recv C from other nodes
MPI_Request arrC_req[4];
MPI_Status arrC_status[4];
for(int target_rank = 1; target_rank < mpi_world_size; target_rank++){
int div_start, div_size;
div_start = target_rank * default_div_size;
div_size = default_div_size;
if(target_rank == (mpi_world_size - 1))
div_size += M - (default_div_size * mpi_world_size);
//MPI_Recv(C + div_start * N, div_size * N, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &status);
MPI_Irecv(C + div_start * N, div_size * N, MPI_FLOAT, target_rank, 0, MPI_COMM_WORLD, &arrC_req[target_rank-1]);
}
MPI_Waitall(mpi_world_size-1, arrC_req, arrC_status);
//printf("main. wait. end\n");
}else{
//0. alloc local memory
int div_size;
div_size = default_div_size;
if(mpi_rank == (mpi_world_size - 1))
div_size += M - (default_div_size * mpi_world_size);
M = div_size; // Adjust M size
alloc_mat(&A, M, K);
alloc_mat(&B, K, N);
alloc_mat(&C, M, N);
//1. Recv part of A
MPI_Recv(A, M * K, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
//2. Recv full B
//MPI_Recv(B, K * N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Bcast(B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD);
//3. Calc sub matrix
//printf("sub. my rank=%d, div_size=%d\n", mpi_rank, div_size);
//timer_start(1);
mat_mul_omp();
//double elapsed_time = timer_stop(1);
//printf("[rank %d] time: %f sec\n", mpi_rank, elapsed_time);
//4. Send C to rank 0 node.
//printf("sub. end. my rank=%d, div_size=%d\n", mpi_rank, div_size);
MPI_Send(C, M * N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);
//MPI_Isend(C, M * N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
}
}