chundoong-lab-ta/SamsungDS22/submissions/HW5/km.hero.lee/kernel.cl

73 lines
2.2 KiB
Common Lisp

#define TS 32
#define WPT 8
#define RTS (TS/WPT)
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
__kernel void sgemm(__global float *A, __global float *B, __global float *C, int M, int N, int K) {
// Thread identifiers
const int row = get_local_id(0); // Local row ID (max: TS)
const int col = get_local_id(1); // Local col ID (max: TS/WPT == RTS)
const int globalRow = TS*get_group_id(0) + row; // Row ID of C (0..M)
const int globalCol = TS*get_group_id(1) + col; // Col ID of C (0..N)
// if (globalRow >= M || globalCol >= MAX(N,K)) return; // boundary check
// Local memory to fit a tile of TS*TS elements of A and B
__local float Asub[TS][TS];
__local float Bsub[TS][TS];
// Initialise the accumulation registers
float acc[WPT];
for (int w=0; w<WPT; w++) {
acc[w] = 0.0f;
}
// Loop over all tiles
const int numTiles = (K+TS-1)/TS;
for (int t=0; t<numTiles; t++) {
int tile_size = TS;
if (t == numTiles - 1) {
}
// Load one tile of A and B into local memory
for (int w=0; w<WPT; w++) {
const int tiledRow = TS*t + row;
const int tiledCol = TS*t + col;
if ((globalRow + w*RTS) >= M || tiledCol >= K) {
Asub[row + w*RTS][col] = 0;
} else {
Asub[row + w*RTS][col] = A[(globalRow + w*RTS)*K + tiledCol];
}
if ((tiledRow + w*RTS) >= K || globalCol >= N) {
Bsub[row + w*RTS][col] = 0;
} else {
Bsub[row + w*RTS][col] = B[(tiledRow + w*RTS)*N + globalCol];
}
}
// Synchronise to make sure the tile is loaded
barrier(CLK_LOCAL_MEM_FENCE);
// Perform the computation for a single tile
for (int k=0; k<TS; k++) {
for (int w=0; w<WPT; w++) {
acc[w] += Asub[row + w*RTS][k] * Bsub[k][col];
}
}
// Synchronise before loading the next tile
barrier(CLK_LOCAL_MEM_FENCE);
}
// Store the final results in C
for (int w=0; w<WPT; w++) {
if ((globalRow + w*RTS) >= M || globalCol >= N) {
continue;
}
C[(globalRow + w*RTS)*N + globalCol] = acc[w];
}
}