chundoong-lab-ta/SamsungDS22/submissions/final/hero83.kim/tmp-B/convolution.cu

296 lines
9.4 KiB
Plaintext

#include "convolution.h"
#include "util.h"
#include <mpi.h>
#include <stdio.h>
#include <cstdio>
#include <cuda_runtime.h>
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define DEBUG (false)
int num_devices = 0;
static float *input_d[4];
static float *output_d[4];
static float *filter_d[4];
static int N_str[8], N_size[8];
__global__ void conv_kernel(
float *input, float *filter, float *output,
int stride, int pad, int dilation,
int N, int C, int H, int W, int K, int R, int S, int OH, int OW) {
// Calc. Index
int n = (blockDim.x * blockIdx.x + threadIdx.x) / K;
int k = (blockDim.x * blockIdx.x + threadIdx.x) % K;
int oh = blockDim.y * blockIdx.y + threadIdx.y;
int ow = blockDim.z * blockIdx.z + threadIdx.z;
if (n >= N || k >= K || oh >= OH || ow >= OW) // unaligned
return;
// Global to Shared
extern __shared__ float filter_shared[];
for (int c = 0; c < C; c++) {
for (int r = 0; r < R; r++) {
for (int s = 0; s < S; s++) {
filter_shared[(c * R * S) + (r * S) + s] = filter[(k * C * R * S) + (c * R * S) + (r * S) + s];
}
}
}
__syncthreads();
// For loop (C-R-S)
float o = 0.f;
for (int c = 0; c < C; c++) {
for (int r = 0; r < R; r++) {
for (int s = 0; s < S; s++) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W)
continue;
float i = input [(n * C * H * W) + (c * H * W) + (h * W) + w];
//float f = filter[(k * C * R * S) + (c * R * S) + (r * S) + s];
float f = filter_shared[(c * R * S) + (r * S) + s];
o += i * f;
}
}
}
output[(n * K * OH * OW) + (k * OH * OW) + (oh * OW) + ow] = o;
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
// Input Data Assign
input = _input;
output = _output;
filter = _filter;
// Split Node Data with MPI
if (mpi_world_size > 1 && N > 4) {
if (mpi_rank == 0) {
if (DEBUG) printf("[rank %d] Data Send...\n", mpi_rank);
// send 2nd half
MPI_Request request0;
MPI_Isend(input+(N_str[4])*C*H*W, (N_size[4]+N_size[5]+N_size[6]+N_size[7])*C*H*W, MPI_FLOAT, 1, 100, MPI_COMM_WORLD, &request0);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 200, MPI_COMM_WORLD, &request0);
}
else {
if (DEBUG) printf("[rank %d] Data Receive...\n", mpi_rank);
// alloc same
alloc_tensor(&input, N, C, H, W); // Alloc must here (not init)
alloc_tensor(&output, N, K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
//zero_tensor(output, (N_size[4]+N_size[5]+N_size[6]+N_size[7]), K, OH, OW); // optional zero
// receive 2nd half
MPI_Recv(input+(N_str[4])*C*H*W, (N_size[4]+N_size[5]+N_size[6]+N_size[7])*C*H*W, MPI_FLOAT, 0, 100, MPI_COMM_WORLD, nullptr);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 200, MPI_COMM_WORLD, nullptr);
}
}
// Upload matrix to every GPU
for (int g = 0; g < num_devices; g++) {
if (N_size[mpi_rank*4+g] > 0) {
if (DEBUG) printf("[rank %d] GPU %d Upload... N_str:%d/N_size:%d\n", mpi_rank, g, N_str[mpi_rank*4+g], N_size[mpi_rank*4+g]);
CUDA_CALL( cudaMemcpy(input_d[g],
input+(N_str[mpi_rank*4+g]*C*H*W),
N_size[mpi_rank*4+g]*C*H*W * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(filter_d[g],
filter,
K*C*R*S * sizeof(float),
cudaMemcpyHostToDevice) );
}
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int g = 0; g < num_devices; g++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
// Launch kernel on every GPU
for (int g = 0; g < num_devices; g++) {
if (N_size[mpi_rank*4+g] > 0) {
if (DEBUG) printf("[rank %d] GPU %d Process...\n", mpi_rank, g);
int NK_block = 1;
int OH_block = 2;
int OW_block = 64; // Max Block 1024 (x*y*z)
int NK_grid = ((N_size[g] * K) + (NK_block - 1)) / NK_block;
int OH_grid = (OH + (OH_block - 1)) / OH_block;
int OW_grid = (OW + (OW_block - 1)) / OW_block;
dim3 blockDim(NK_block, OH_block, OW_block);
dim3 gridDim(NK_grid, OH_grid, OW_grid);
CUDA_CALL( cudaSetDevice(g) );
conv_kernel<<<gridDim, blockDim, C*R*S*sizeof(float)>>>(
input_d[g], filter_d[g], output_d[g],
stride, pad, dilation,
N_size[g], C, H, W, K, R, S, OH, OW
);
}
}
for (int g = 0; g < num_devices; g++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
// Merge GPU
for (int g = 0; g < num_devices; g++) {
if (N_size[mpi_rank*4+g] > 0) {
if (DEBUG) printf("[rank %d] GPU %d Merge... N_str:%d/N_size:%d\n", mpi_rank, g, N_str[mpi_rank*4+g], N_size[mpi_rank*4+g]);
CUDA_CALL( cudaMemcpy(output+(N_str[mpi_rank*4+g]*K*OH*OW),
output_d[g],
N_size[mpi_rank*4+g]*K*OH*OW * sizeof(float),
cudaMemcpyDeviceToHost) );
}
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int g = 0; g < num_devices; g++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
// Merge Node Data with MPI
if (mpi_world_size > 1 && N > 4) {
if (mpi_rank == 0) {
if (DEBUG) printf("[rank %d] Data Receive...\n", mpi_rank);
MPI_Recv(output+(N_str[4])*K*OH*OW, (N_size[4]+N_size[5]+N_size[6]+N_size[7])*K*OH*OW, MPI_FLOAT, 1, 300, MPI_COMM_WORLD, nullptr);
}
else {
if (DEBUG) printf("[rank %d] Data Send...\n", mpi_rank);
MPI_Request request1; // Must for Isend
MPI_Isend(output+(N_str[4])*K*OH*OW, (N_size[4]+N_size[5]+N_size[6]+N_size[7])*K*OH*OW, MPI_FLOAT, 0, 300, MPI_COMM_WORLD, &request1);
}
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
// Calc Output Size
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
//if (DEBUG) printf("[convolution %d] OH:%d, OW:%d...\n", mpi_rank, OH, OW);
// MPI Memory Allocation
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
// Calc. Both Node
if (mpi_world_size > 1) {
// 2 Nodes (8 GPUs)
N_size[0] = (N/8) + (N%8 > 0);
N_size[1] = (N/8) + (N%8 > 1);
N_size[2] = (N/8) + (N%8 > 2);
N_size[3] = (N/8) + (N%8 > 3);
N_size[4] = (N/8) + (N%8 > 4);
N_size[5] = (N/8) + (N%8 > 5);
N_size[6] = (N/8) + (N%8 > 6);
N_size[7] = (N/8);
N_str[0] = 0;
N_str[1] = N_str[0] + N_size[0];
N_str[2] = N_str[1] + N_size[1];
N_str[3] = N_str[2] + N_size[2];
N_str[4] = N_str[3] + N_size[3];
N_str[5] = N_str[4] + N_size[4];
N_str[6] = N_str[5] + N_size[5];
N_str[7] = N_str[6] + N_size[6];
}
else {
// 1 Node (4 GPUs)
N_size[0] = (N/4) + (N%4 > 0);
N_size[1] = (N/4) + (N%4 > 1);
N_size[2] = (N/4) + (N%4 > 2);
N_size[3] = (N/4);
N_str[0] = 0;
N_str[1] = N_str[0] + N_size[0];
N_str[2] = N_str[1] + N_size[1];
N_str[3] = N_str[2] + N_size[2];
}
// GPU Memory Allocation
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("[rank %d] Using %d devices\n", mpi_rank, num_devices);
for (int g = 0; g < num_devices; g++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, g) );
printf("[rank %d] GPU %d : %s\n", mpi_rank, g, prop.name);
}
if (num_devices <= 0) {
printf("[rank %d] No CUDA device found. Aborting\n", mpi_rank);
exit(1);
}
// Setup size for each GPU
for (int g = 0; g < num_devices; g++) {
if (N_size[mpi_rank*4+g] > 0) {
CUDA_CALL( cudaSetDevice(g) );
CUDA_CALL( cudaMalloc(&input_d [g], N_size[0]*C*H*W * sizeof(float)) ); // Max size
CUDA_CALL( cudaMalloc(&filter_d[g], K*C*R*S * sizeof(float)) );
CUDA_CALL( cudaMalloc(&output_d[g], N_size[0]*K*OH*OW * sizeof(float)) );
}
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int g = 0; g < num_devices; g++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int g = 0; g < num_devices; g++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
for (int g = 0; g < num_devices; g++) {
CUDA_CALL( cudaFree(input_d[g]) );
CUDA_CALL( cudaFree(filter_d[g]) );
CUDA_CALL( cudaFree(output_d[g]) );
}
}