chundoong-lab-ta/SamsungDS22/submissions/final/jb114.seo/A/convolution.cpp

212 lines
4.9 KiB
C++

#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include <immintrin.h>
#include <omp.h>
#include "util.h"
#define MAX_NUM_THREAD 40 // 0-39
#define CEIL_DIV(x,y) ( ((x) + (y) - 1) / (y) )
#define CEIL(x,y) ( CEIL_DIV((x),(y)) * (y) )
#define MIN(a,b) ( ((a) < (b)) ? (a) : (b) )
#define likely(x) __builtin_expect((x),1)
#define unlikely(x) __builtin_expect((x),0)
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static void conv_core(float *in, float *flt, float *out)
{
for (int c = 0; c < C; ++c)
{
float *inForCh = &in[c * H * W];
float *fltForCh = &flt[c * R * S];
#pragma omp parallel num_threads(MAX_NUM_THREAD)
#pragma omp for collapse(2) schedule(static) nowait
for (int oh = 0; oh < OH; oh++)
{
for (int ow = 0; ow < OW; ow++)
{
float o = 0.0f;
for (int r = 0; r < R; r++)
{
for (int s = 0; s < S; s++)
{
int h = oh * stride - pad + r * dilation;
if (unlikely(h < 0 || h >= H))
continue;
int w = ow * stride - pad + s * dilation;
if (unlikely(w < 0 || w >= W))
continue;
float i = inForCh[h * W + w];
float f = fltForCh[r * S + s];
o += i * f;
}
}
out[oh * OW + ow] += o;
}
}
}
}
#define MPI_ASYNC 1
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride)
{
#if MPI_ASYNC == 1
MPI_Request reqs[3] = { MPI_REQUEST_NULL, MPI_REQUEST_NULL, MPI_REQUEST_NULL };
#endif
////////////////////////////////////////////////////////////////////////////////
// scatter
if (mpi_rank == 0)
{
input = _input;
output = _output;
filter = _filter;
}
#if MPI_ASYNC == 1
MPI_Ibcast(filter, K * C * R * S, MPI_FLOAT, 0, MPI_COMM_WORLD, &reqs[0]);
#else
MPI_Bcast(filter, K * C * R * S, MPI_FLOAT, 0, MPI_COMM_WORLD);
#endif
if (mpi_rank == 0)
{
const int slicedN = CEIL_DIV(_N, mpi_world_size);
const int sizeOfN = slicedN * C * H * W;
float *inputForNodes = input + (N * C * H * W);
for (int i = 1; i < mpi_world_size; i++)
{
#if MPI_ASYNC == 1
MPI_Isend(inputForNodes + sizeOfN * (i - 1), sizeOfN, MPI_FLOAT, i, 1, MPI_COMM_WORLD, &reqs[1]);
#else
MPI_Send(inputForNodes + sizeOfN * (i - 1), sizeOfN, MPI_FLOAT, i, 1, MPI_COMM_WORLD);
#endif
}
}
else
{
#if MPI_ASYNC == 1
MPI_Irecv(input, N * C * H * W, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &reqs[1]);
#else
MPI_Recv(input, N * C * H * W, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
#endif
zero_tensor(output, N, K, OH, OW);
}
#if MPI_ASYNC == 1
MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);
#endif
////////////////////////////////////////////////////////////////////////////////
// calc
for (int n = 0; n < N; ++n)
{
for (int k = 0; k < K; ++k)
{
conv_core(
&input[n * C * H * W],
&filter[k * C * R * S],
&output[n * K * OH * OW + k * OH * OW]);
}
}
////////////////////////////////////////////////////////////////////////////////
// gather
if (mpi_rank == 0)
{
const int slicedN = CEIL_DIV(_N, mpi_world_size);
const int sizeOfN = slicedN * K * OH * OW;
float *outputForNodes = output + (N * K * OH * OW);
for (int i = 1; i < mpi_world_size; i++)
{
#if MPI_ASYNC == 1
MPI_Irecv(outputForNodes + sizeOfN * (i - 1), sizeOfN, MPI_FLOAT, i, 2, MPI_COMM_WORLD, &reqs[2]);
#else
MPI_Recv(outputForNodes + sizeOfN * (i - 1), sizeOfN, MPI_FLOAT, i, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
#endif
}
}
else
{
#if MPI_ASYNC == 1
MPI_Isend(output, N * K * OH * OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD, &reqs[2]);
#else
MPI_Send(output, N * K * OH * OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD);
#endif
}
#if MPI_ASYNC == 1
MPI_Wait(&reqs[2], MPI_STATUS_IGNORE);
#endif
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride)
{
C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
N = CEIL_DIV(_N, mpi_world_size);
if (mpi_rank == 0)
{
N = _N - N * (mpi_world_size - 1);
}
else
{
alloc_tensor(&input, N, C, H, W);
alloc_tensor(&filter, K, C, R, S);
alloc_tensor(&output, N, K, OH, OW);
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride)
{
if (mpi_rank != 0)
{
free(input);
free(filter);
free(output);
}
}