chundoong-lab-ta/SamsungDS22/submissions/final/ss1.eom/B/convolution.cu

345 lines
12 KiB
Plaintext

#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include "util.h"
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
//#define TS_X 2
//#define TS_Y 2
//#define TS_Z 32
#define TS_X 2
#define TS_Y 2
#define TS_Z 32
#define MAX_NUM_GPU 4
int num_devices = 0;
static float *in_d[MAX_NUM_GPU];
static float *fil_d[MAX_NUM_GPU];
static float *out_d[MAX_NUM_GPU];
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU];
inline void cuda_conv();
inline void cuda_conv_init(int,int);
inline void cuda_conv_final(int);
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
int p_n, remain, offset;
MPI_Status status;
MPI_Request request;
__global__ void conv(float *input, float *filter, float *output, int N, int C, int H, int W,
int K, int R, int S, int OH, int OW, int pad, int dilation, int stride) {
int k = blockDim.x * blockIdx.x + threadIdx.x;
int oh = blockDim.y * blockIdx.y + threadIdx.y;
int ow = blockDim.z * blockIdx.z + threadIdx.z;
//__shared__ float s_filter[K*C*R*S];
//for (int i =0; i<K*C*R*S; i++) s_filter[i] = filter[i];
if (k >= K || oh>= OH || ow >= OW) return;
int CHW = C*H*W;
int CRS = C*R*S;
int HW = H*W;
int RS = R*S;
if (C%8==0 && R==16 && S==16 && dilation==1 && pad==0 && stride==1)
{
for(int n = 0; n < N; n++)
{
float o = 0.f;
//for (int c = 0; c < C; c+8)
//for (int c = 0; c < C; c++)
//for (int c = 0; c < C; c=c+2)
for (int c = 0; c < C; c=c+4)
{
for (int r = 0; r < R; r++)
{
for (int s = 0; s < S; s++)
{
int h = oh + r ;
int w = ow + s ;
//if (h < 0 || h >= H || w < 0 || w >= W) continue;
//float i = input[n * C * H * W + c * H * W + (oh+r) * W + ow+s];
//float f = filter[k * C * R * S + c * R * S + r * S + s];
//o += i * f;
//float i0 = input[n * C * H * W + c * H * W + h * W + w];
//float f0 = filter[k * C * R * S + c * R * S + r * S + s];
//float i1 = input[n * C * H * W + (c+1) * H * W + h * W + w];
//float f1 = filter[k * C * R * S + (c+1) * R * S + r * S + s];
//o += i0*f0 + i1*f1;
//float i0 = input[n * C * H * W + c * H * W + h * W + w];
//float f0 = filter[k * C * R * S + c * R * S + r * S + s];
//float i1 = input[n * C * H * W + (c+1) * H * W + h * W + w];
//float f1 = filter[k * C * R * S + (c+1) * R * S + r * S + s];
//o += i0*f0 + i1*f1;
float i0 = input[n * CHW + c * HW + h * W + w];
float f0 = filter[k * CRS + c * RS + r * S + s];
float i1 = input[n * CHW + (c+1) * HW + h * W + w];
float f1 = filter[k * CRS + (c+1) * RS + r * S + s];
float i2 = input[n * CHW + (c+2) * HW + h * W + w];
float f2 = filter[k * CRS + (c+2) * RS + r * S + s];
float i3 = input[n * CHW + (c+3) * HW + h * W + w];
float f3 = filter[k * CRS + (c+3) * RS + r * S + s];
o += i0*f0 + i1*f1 + i2*f2 + i3*f3 ;
//float i0 = input[n * C * H * W + c * H * W + h * W + w];
//float f0 = filter[k * C * R * S + c * R * S + r * S + s];
//float i1 = input[n * C * H * W + (c+1) * H * W + h * W + w];
//float f1 = filter[k * C * R * S + (c+1) * R * S + r * S + s];
//float i2 = input[n * C * H * W + (c+2) * H * W + h * W + w];
//float f2 = filter[k * C * R * S + (c+2) * R * S + r * S + s];
//float i3 = input[n * C * H * W + (c+3) * H * W + h * W + w];
//float f3 = filter[k * C * R * S + (c+3) * R * S + r * S + s];
//float i4 = input[n * C * H * W + (c+4) * H * W + h * W + w];
//float f4 = filter[k * C * R * S + (c+4) * R * S + r * S + s];
//float i5 = input[n * C * H * W + (c+5) * H * W + h * W + w];
//float f5 = filter[k * C * R * S + (c+5) * R * S + r * S + s];
//float i6 = input[n * C * H * W + (c+6) * H * W + h * W + w];
//float f6 = filter[k * C * R * S + (c+6) * R * S + r * S + s];
//float i7 = input[n * C * H * W + (c+7) * H * W + h * W + w];
//float f7 = filter[k * C * R * S + (c+7) * R * S + r * S + s];
//o += i0*f0 + i1*f1 + i2*f2 + i3*f3 + i4*f4 + i5*f5 + i6*f6 + i7*f7;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
else
{
for(int n = 0; n < N; n++)
{
float o = 0.f;
//for (int c = 0; c < C; c+8)
for (int c = 0; c < C; c++)
{
for (int r = 0; r < R; r++)
{
for (int s = 0; s < S; s++)
{
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
//float i0 = input[n * C * H * W + c * H * W + h * W + w];
//float f0 = filter[k * C * R * S + c * R * S + r * S + s];
//float i1 = input[n * C * H * W + (c+1) * H * W + h * W + w];
//float f1 = filter[k * C * R * S + (c+1) * R * S + r * S + s];
//float i2 = input[n * C * H * W + (c+2) * H * W + h * W + w];
//float f2 = filter[k * C * R * S + (c+2) * R * S + r * S + s];
//float i3 = input[n * C * H * W + (c+3) * H * W + h * W + w];
//float f3 = filter[k * C * R * S + (c+3) * R * S + r * S + s];
//float i4 = input[n * C * H * W + (c+4) * H * W + h * W + w];
//float f4 = filter[k * C * R * S + (c+4) * R * S + r * S + s];
//float i5 = input[n * C * H * W + (c+5) * H * W + h * W + w];
//float f5 = filter[k * C * R * S + (c+5) * R * S + r * S + s];
//float i6 = input[n * C * H * W + (c+6) * H * W + h * W + w];
//float f6 = filter[k * C * R * S + (c+6) * R * S + r * S + s];
//float i7 = input[n * C * H * W + (c+7) * H * W + h * W + w];
//float f7 = filter[k * C * R * S + (c+7) * R * S + r * S + s];
//o += i0*f0 + i1*f1 + i2*f2 + i3*f3 + i4*f4 + i5*f5 + i6*f6 + i7*f7;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
inline void cuda_conv() {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
dim3 blockDim(TS_X, TS_Y, TS_Z);
dim3 gridDim((K+TS_X-1)/TS_X, (OH+TS_Y-1)/TS_Y, (OW+TS_Z-1)/TS_Z);
CUDA_CALL( cudaSetDevice(i) );
conv<<<gridDim, blockDim>>>(in_d[i], fil_d[i], out_d[i], Nend[i] - Nbegin[i], C, H ,W , K, R, S, OH, OW, pad, dilation, stride );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
}
inline void cuda_conv_init() {
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Nbegin[i] = (p_n / num_devices) * i;
Nend[i] = (p_n / num_devices) * (i + 1);
}
Nend[num_devices - 1] = p_n;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&in_d[i], (Nend[i] - Nbegin[i]) * C * H * W * sizeof(float)) );
CUDA_CALL( cudaMalloc(&fil_d[i], K * C * R * S * sizeof(float)) );
CUDA_CALL( cudaMalloc(&out_d[i], (Nend[i] - Nbegin[i]) * K* OH * OW * sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(in_d[i], input + Nbegin[i] * C * H * W,
(Nend[i] - Nbegin[i]) * C * H * W * sizeof(float),
cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(fil_d[i], filter, K * C * R * S * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
}
inline void cuda_conv_final() {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(output + Nbegin[i] * K * OH * OW, out_d[i],
(Nend[i] - Nbegin[i]) * K * OH * OW * sizeof(float),
cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
input = _input;
output = _output;
filter = _filter;
p_n = N/mpi_world_size;
remain= N%mpi_world_size;
offset = remain;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0)
{
if ( mpi_world_size == 2)
{
offset += p_n;
MPI_Isend(&offset, 1, MPI_INT, 1 , 1, MPI_COMM_WORLD,&request);
MPI_Isend(&p_n, 1, MPI_INT, 1 , 1, MPI_COMM_WORLD,&request);
MPI_Isend(&input[offset*C*H*W], p_n*C*H*W, MPI_FLOAT, 1 , 1, MPI_COMM_WORLD,&request);
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 1, MPI_COMM_WORLD,&request);
}
p_n += remain;
cuda_conv_init();
cuda_conv();
cuda_conv_final();
if ( mpi_world_size ==2)
{
MPI_Recv(&offset, 1, MPI_INT, 1, 2, MPI_COMM_WORLD, &status);
MPI_Recv(&p_n, 1, MPI_INT, 1, 2, MPI_COMM_WORLD, &status);
MPI_Recv(&output[offset*K*OH*OW], p_n*K*OH*OW, MPI_FLOAT, 1, 2, MPI_COMM_WORLD, &status);
}
}
if(mpi_rank > 0)
{
alloc_tensor(&input, p_n, C,H,W);
alloc_tensor(&filter, K,C,R,S);
alloc_tensor(&output, p_n, K,OH,OW);
MPI_Recv(&offset, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);
MPI_Recv(&p_n, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);
MPI_Recv(input, p_n*C*H*W, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 1, MPI_COMM_WORLD, &status);
cuda_conv_init();
cuda_conv();
cuda_conv_final();
MPI_Send(&offset, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Send(&p_n, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);
MPI_Send(output, p_n*K*OH*OW, MPI_FLOAT, 0, 2, MPI_COMM_WORLD);
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}