chundoong-lab-ta/SamsungDS22/submissions/final/yd99.park/tmp-B/convolution.cu

182 lines
5.4 KiB
Plaintext

#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
int num_devices = 0;
float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static float *in_d[MAX_NUM_GPU];
static float *fil_d[MAX_NUM_GPU];
static float *out_d[MAX_NUM_GPU];
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU];
int N_dev[MAX_NUM_GPU];
__global__ void sgemm(float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
float* input = _input;
float* output = _output;
float* filter = _filter;
int N = _N; int C = _C; int H = _H; int W = _W;
int K = _K; int R = _R; int S = _S;
int pad = _pad;
int dilation = _dilation;
int stride = _stride;
int OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
int OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
int n = blockIdx.x;
int k = blockIdx.y;
int oh = blockIdx.z;
int ow = threadIdx.x;
float o = 0.0f;
for (int c=0; c<C; ++c) {
for (int r=0; r<R; ++r) {
for (int s=0; s<S; ++s) {
int h = oh*stride - pad + r*dilation;
int w = ow*stride - pad + s*dilation;
if(h<0 || h>=H || w<0 || w>=W) continue;
float i = input[n*C*H*W + c*H*W + h*W +w];
float f = filter[k*C*R*S + c*R*S + r*S + s];
o += i * f;
}
}
}
output[n*K*OH*OW + k*OH*OW + oh*OW + ow] = o;
}
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
if ( mpi_rank != 0 ) return;
input = _input;
output = _output;
filter = _filter;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Nbegin[i] = (N / num_devices) * i;
Nend[i] = (N / num_devices) * (i + 1);
}
Nend[num_devices - 1] = N;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&in_d[i], (Nend[i]-Nbegin[i]) * C*H*W * sizeof(float)) );
CUDA_CALL( cudaMalloc(&fil_d[i], K*C*R*S * sizeof(float)) );
CUDA_CALL( cudaMalloc(&out_d[i], (Nend[i]-Nbegin[i]) * K*OH*OW * sizeof(float)) );
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(in_d[i], input + Nbegin[i] * C*H*W, (Nend[i]-Nbegin[i]) * C*H*W * sizeof(float), cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(fil_d[i], filter, K*C*R*S * sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
dim3 blockDim(OW, 1, 1);
dim3 gridDim((Nend[i]-Nbegin[i]), K, OH);
N_dev[i]=Nend[i]-Nbegin[i];
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(in_d[i], out_d[i], fil_d[i], N_dev[i], C, H, W, K, R, S, pad, dilation, stride);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(output + Nbegin[i] * K*OH*OW, out_d[i], (Nend[i]-Nbegin[i]) * K*OH*OW * sizeof(float), cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}