chundoong-lab-ta/SamsungDS22/submissions/HW6/hongpooh.kim/mat_mul.cu

168 lines
5.0 KiB
Plaintext

#include "mat_mul.h"
#include <cstdio>
#include <cuda_runtime.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
//#define MAX_NUM_GPU 1
#define MAX_NUM_GPU 4
#define TS 16 // Tile Width 16
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int M, N, K;
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
int num_devices = 0;
int size;
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
/* 1. original code - about 40 GFLOPS
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if (i >= M || j >= N)
return;
C[i * N + j] = 0;
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
*/
__shared__ float Asub[TS][TS];
__shared__ float Bsub[TS][TS];
int bx = blockIdx.x, by = blockIdx.y;
int tx = threadIdx.x, ty = threadIdx.y;
//test_only: int by = blockIdx.x, bx = blockIdx.y;
//test_only: int ty = threadIdx.x, tx = threadIdx.y;
int Row = by * TS + ty;
int Col = bx * TS + tx;
float Pvalue = 0;
//const int num_tiles = M / TS;
//for (int m = 0; m < (M-1)/TS + 1; m++) {
for (int m = 0; m < (K - 1)/TS + 1; m++) {
if (Row < M && m*TS + tx < K) {
Asub[ty][tx] = A[Row*K + m*TS + tx];
} else {
Asub[ty][tx] = 0.0f;
}
if (Col < N && m*TS + ty < K) {
Bsub[ty][tx] = B[(m*TS + ty)*N + Col];
} else {
Bsub[ty][tx] = 0x0f;
}
__syncthreads();
for (int k = 0; k < TS; k++) {
Pvalue += Asub[ty][k] * Bsub[k][tx];
}
__syncthreads();
}
if (Row < M && Col < N) {
C[Row*N + Col] = Pvalue;
}
}
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
size = (i == num_devices - 1) ? (M-(M/num_devices*(num_devices-1))) : M/num_devices;
//dim3 blockDim(1, 1, 1);
dim3 blockDim(TS, TS, 1);
//dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
//dim3 gridDim((N-1)/TS + 1, (M-1)/TS + 1, 1);
dim3 gridDim((N-1)/TS + 1, (size-1)/TS + 1, 1);
CUDA_CALL( cudaSetDevice(i) );
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
//CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
M = _M, N = _N, K = _K;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
// temp: for Single GPU test
//num_devices = 1;
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i])*K*sizeof(float)) );
CUDA_CALL( cudaMalloc(&b_d[i], K*N*sizeof(float)) );
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i])*N*sizeof(float)) );
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i]*K,
(Mend[i] - Mbegin[i])*K*sizeof(float), cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(b_d[i], B, K*N*sizeof(float), cudaMemcpyHostToDevice) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
// Do any post-matmul cleanup work here.
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(C + Mbegin[i]*N, c_d[i],
(Mend[i] - Mbegin[i])*N*sizeof(float), cudaMemcpyDeviceToHost) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}