214 lines
7.0 KiB
Plaintext
214 lines
7.0 KiB
Plaintext
#include "mat_mul.h"
|
|
|
|
#include <cstdio>
|
|
#include <cuda_runtime.h>
|
|
|
|
#define TS 32
|
|
#define WPT 16
|
|
#define RTS (TS / WPT)
|
|
|
|
#define CUDA_CALL(f) \
|
|
{ \
|
|
cudaError_t err = (f); \
|
|
if (err != cudaSuccess) { \
|
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
|
err, cudaGetErrorString(err)); \
|
|
exit(1); \
|
|
} \
|
|
}
|
|
|
|
#define MAX_NUM_GPU 4
|
|
int num_devices = 0;
|
|
|
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
|
|
|
// Thread identifiers
|
|
const int row = threadIdx.x; // Local row ID (max: TS)
|
|
const int col = threadIdx.y; // Local col ID (max: TS/WPT == RTS)
|
|
const int globalRow = (blockDim.x * WPT) * blockIdx.x + row; // Row ID of C (0..M)
|
|
const int globalCol = blockDim.y * blockIdx.y + col; // Col ID of C (0..N)
|
|
|
|
// Local memory to fit a tile of TS*TS elements of A and B
|
|
__shared__ float Asub[TS][TS];
|
|
__shared__ float Bsub[TS][TS];
|
|
|
|
// Initialise the accumulation registers
|
|
float tempVal[WPT];
|
|
for (int w=0; w<WPT; w++)
|
|
tempVal[w] = 0.0f;
|
|
|
|
// Loop over all tiles
|
|
const int numTiles = (K + TS - 1) / TS ; // Ceiling to Tile Size
|
|
//const int numTiles = (K / TS) + 1 - (K % TS == 0);
|
|
for (int t=0; t<numTiles; t++) {
|
|
|
|
// Load one tile of A and B into local memory
|
|
for (int w=0; w<WPT; w++) {
|
|
const int tiledRow = TS*t + row;
|
|
const int tiledCol = TS*t + col;
|
|
|
|
const int orgM = globalRow + w*RTS ;
|
|
const int orgK = tiledRow + w*RTS ;
|
|
|
|
// Copy Global A to local
|
|
if ( (orgM < M) && (tiledCol < K) )
|
|
Asub[row + w*RTS][col] = A[orgM*K + tiledCol] ;
|
|
else
|
|
Asub[row + w*RTS][col] = 0.0f ;
|
|
|
|
// Copy Global B to local
|
|
if ( (orgK < K) && (globalCol < N) )
|
|
Bsub[row + w*RTS][col] = B[orgK*N + globalCol] ;
|
|
else
|
|
Bsub[row + w*RTS][col] = 0.0f ;
|
|
}
|
|
|
|
// Synchronise to make sure the tile is loaded
|
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
|
__syncthreads() ;
|
|
|
|
// Perform the computation for a single tile
|
|
for (int k=0; k<TS; k++) {
|
|
for (int w=0; w<WPT; w++) {
|
|
tempVal[w] += Asub[row + w*RTS][k] * Bsub[k][col];
|
|
}
|
|
}
|
|
|
|
// Synchronise before loading the next tile
|
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
|
__syncthreads() ;
|
|
}
|
|
|
|
// Store the final results in C
|
|
for (int w=0; w<WPT; w++) {
|
|
const int orgM = globalRow + w*RTS ;
|
|
|
|
if ( (orgM < M) && (globalCol < N) )
|
|
C[orgM * N + globalCol] = tempVal[w];
|
|
}
|
|
|
|
//int i = blockDim.x * blockIdx.x + threadIdx.x;
|
|
//int j = blockDim.y * blockIdx.y + threadIdx.y;
|
|
//if (i >= M || j >= N)
|
|
// return;
|
|
//
|
|
//C[i * N + j] = 0;
|
|
//for (int k = 0; k < K; ++k) {
|
|
// C[i * N + j] += A[i * K + k] * B[k * N + j];
|
|
//}
|
|
}
|
|
|
|
// Array of device (GPU) pointers
|
|
static float *a_d[MAX_NUM_GPU];
|
|
static float *b_d[MAX_NUM_GPU];
|
|
static float *c_d[MAX_NUM_GPU];
|
|
static int M, N, K;
|
|
static int M_str[MAX_NUM_GPU], M_siz[MAX_NUM_GPU];
|
|
//static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
|
|
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
|
|
|
// Launch kernel on every GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
dim3 blockDim(TS/WPT, TS, 1);
|
|
dim3 gridDim( (M_siz[i] + TS - 1) / TS, (N + TS - 1) / TS, 1);
|
|
//dim3 gridDim( (Mend[i] - Mbegin[i] +TS - 1) / TS, (N + TS - 1) / TS, 1);
|
|
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M_siz[i], N, K);
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|
|
|
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
|
M = _M, N = _N, K = _K;
|
|
|
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
|
|
|
printf("Using %d devices\n", num_devices);
|
|
for (int i = 0; i < num_devices; i++) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
|
|
|
// Try printing more detailed information here
|
|
printf("[GPU %d] %s\n", i, prop.name);
|
|
}
|
|
|
|
if (num_devices <= 0) {
|
|
printf("No CUDA device found. Aborting\n");
|
|
exit(1);
|
|
}
|
|
|
|
// Setup problem size for each GPU
|
|
|
|
M_str [0] = 0 ;
|
|
M_siz [0] = M / num_devices ;
|
|
int mod = M % num_devices ;
|
|
if (mod != 0)
|
|
M_siz[0] = M_siz[0] + mod ;
|
|
|
|
// Assign Remained Device
|
|
for (int i = 1 ; i < num_devices ; i++){
|
|
M_str[i] = M_str[i - 1] + M_siz[i - 1];
|
|
|
|
if (i == num_devices - 1) { // Last Device
|
|
M_siz[i] = M - M_str[i] ;
|
|
} else {
|
|
M_siz[i] = M / num_devices ;
|
|
}
|
|
}
|
|
|
|
//for (int i = 0; i < num_devices; i++) {
|
|
// Mbegin[i] = (M / num_devices) * i;
|
|
// Mend[i] = (M / num_devices) * (i + 1);
|
|
//}
|
|
//Mend[num_devices - 1] = M;
|
|
|
|
// Allocate device memory for each GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaSetDevice(i) );
|
|
CUDA_CALL( cudaMalloc(&a_d[i], M_siz[i] * K * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
|
CUDA_CALL( cudaMalloc(&c_d[i], M_siz[i] * N * sizeof(float)) );
|
|
//CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
|
//CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
|
//CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
|
}
|
|
|
|
// Upload A and B matrix to every GPU
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaMemcpy(a_d[i], &A[M_str[i] * K], M_siz[i] * K * sizeof(float), cudaMemcpyHostToDevice) );
|
|
CUDA_CALL( cudaMemcpy(b_d[i], B , K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
|
//CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
|
// (Mend[i] - Mbegin[i]) * K * sizeof(float),
|
|
// cudaMemcpyHostToDevice) );
|
|
//CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|
|
|
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
|
// Do any post-matmul cleanup work here.
|
|
|
|
// Download C matrix from GPUs
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaMemcpy(&C[M_str[i] * N], c_d[i], M_siz[i] * N * sizeof(float), cudaMemcpyDeviceToHost) );
|
|
//CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
|
// (Mend[i] - Mbegin[i]) * N * sizeof(float),
|
|
// cudaMemcpyDeviceToHost) );
|
|
}
|
|
|
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
|
for (int i = 0; i < num_devices; i++) {
|
|
CUDA_CALL( cudaDeviceSynchronize() );
|
|
}
|
|
}
|