chundoong-lab-ta/SamsungDS22/submissions/final/jj15.kim/tmp-A/convolution.cpp

139 lines
4.3 KiB
C++

#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include "omp.h"
#include "util.h"
#include <immintrin.h>
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
static int num_threads = 100;
void convolution(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
MPI_Request req;
MPI_Status status;
int size[2];
size[0] = (mpi_world_size == 2)? _N / mpi_world_size : _N;
size[1] = _N - size[0];
input = _input;
output = _output;
filter = _filter;
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
if (mpi_rank == 0 && mpi_world_size == 2) {
MPI_Isend(&input[size[0] * C * H * W], size[1] * C * H * W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &req);
MPI_Isend(filter, K * C * R * S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &req);
}
else if (mpi_world_size == 2) {
alloc_tensor(&input, size[1], C, H, W);
alloc_tensor(&output, size[1], K, OH, OW);
alloc_tensor(&filter, K, C, R, S);
MPI_Recv(input, size[1] * C * H * W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Recv(filter, K * C * R * S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
}
//omp_set_num_threads(num_threads);
if (dilation == 1 && pad == 0 && stride == 1 && !(S % 16)) {
#pragma omp parallel for num_threads(num_threads) collapse(2) schedule(dynamic)
for (int n = 0; n < size[mpi_rank]; ++n) {
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
__m256 vout0, vout1;
vout0 = _mm256_setzero_ps();
vout1 = _mm256_setzero_ps();
for (int c = 0; c < C; ++c) {
__m256 vin0, vin1, vfi0, vfi1;
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; s = s + 16) {
int h = oh + r;
int w = ow + s;
vfi0 = _mm256_load_ps(&filter[k * C * R * S + c * R * S + r * S + s]);
vfi1 = _mm256_load_ps(&filter[k * C * R * S + c * R * S + r * S + s + 8]);
vin0 = _mm256_load_ps(&input[n * C * H * W + c * H * W + h * W + w]);
vin1 = _mm256_load_ps(&input[n * C * H * W + c * H * W + h * W + w + 8]);
vout0 = _mm256_fmadd_ps(vfi0, vin0, vout0);
vout1 = _mm256_fmadd_ps(vfi1, vin1, vout1);
}
}
}
vout0 = _mm256_add_ps(vout0, vout1);
float *tmp = (float*)&vout0;
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] =
tmp[0] + tmp[1] + tmp[2] + tmp[3] + tmp[4] + tmp[5] + tmp[6] + tmp[7];
}
}
}
}
}
else {
#pragma omp parallel for num_threads(num_threads) collapse(3) schedule(dynamic)
for (int n = 0; n < size[mpi_rank]; ++n) {
for (int k = 0; k < K; ++k) {
for (int oh = 0; oh < OH; ++oh) {
for (int ow = 0; ow < OW; ++ow) {
float o = 0.f;
for (int c = 0; c < C; ++c) {
for (int r = 0; r < R; ++r) {
for (int s = 0; s < S; ++s) {
int h = oh * stride - pad + r * dilation;
int w = ow * stride - pad + s * dilation;
if (h < 0 || h >= H || w < 0 || w >= W) continue;
float i = input[n * C * H * W + c * H * W + h * W + w];
float f = filter[k * C * R * S + c * R * S + r * S + s];
o += i * f;
}
}
}
output[n * K * OH * OW + k * OH * OW + oh * OW + ow] = o;
}
}
}
}
}
if (mpi_rank == 0 && mpi_world_size == 2) {
MPI_Recv(&output[size[0] * K * OH * OW], size[1] * K * OH * OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
}
else if (mpi_world_size == 2) {
MPI_Isend(output, size[1] * K * OH * OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &req);
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}