chundoong-lab-ta/APSS23/convolution_im2col_TC/half.hpp

5516 lines
224 KiB
C++

// half - IEEE 754-based half-precision floating-point library.
//
// Copyright (c) 2012-2021 Christian Rau <rauy@users.sourceforge.net>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// Version 2.2.0
/// \file
/// Main header file for half-precision functionality.
#ifndef HALF_HALF_HPP
#define HALF_HALF_HPP
#define HALF_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#if defined(__INTEL_COMPILER)
#define HALF_ICC_VERSION __INTEL_COMPILER
#elif defined(__ICC)
#define HALF_ICC_VERSION __ICC
#elif defined(__ICL)
#define HALF_ICC_VERSION __ICL
#else
#define HALF_ICC_VERSION 0
#endif
// check C++11 language features
#if defined(__clang__) // clang
#if __has_feature(cxx_static_assert) && \
!defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if __has_feature(cxx_user_literals) && \
!defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if __has_feature(cxx_thread_local) && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && \
!defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#elif HALF_ICC_VERSION && defined(__INTEL_CXX11_MODE__) // Intel C++
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if HALF_ICC_VERSION >= 1500 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if HALF_ICC_VERSION >= 1400 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if HALF_ICC_VERSION >= 1110 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#elif defined(__GNUC__) // gcc
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
#if HALF_GCC_VERSION >= 408 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if HALF_GCC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if HALF_GCC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#endif
#define HALF_TWOS_COMPLEMENT_INT 1
#elif defined(_MSC_VER) // Visual C++
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_THREAD_LOCAL)
#define HALF_ENABLE_CPP11_THREAD_LOCAL 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
#define HALF_ENABLE_CPP11_USER_LITERALS 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
#define HALF_ENABLE_CPP11_CONSTEXPR 1
#endif
#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
#define HALF_ENABLE_CPP11_NOEXCEPT 1
#endif
#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
#endif
#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
#define HALF_ENABLE_CPP11_LONG_LONG 1
#endif
#define HALF_TWOS_COMPLEMENT_INT 1
#define HALF_POP_WARNINGS 1
#pragma warning(push)
#pragma warning(disable : 4099 4127 4146) // struct vs class, constant in if,
// negative unsigned
#endif
// check C++11 library features
#include <utility>
#if defined(_LIBCPP_VERSION) // libc++
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#ifndef HALF_ENABLE_CPP11_CSTDINT
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#ifndef HALF_ENABLE_CPP11_CMATH
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#ifndef HALF_ENABLE_CPP11_HASH
#define HALF_ENABLE_CPP11_HASH 1
#endif
#ifndef HALF_ENABLE_CPP11_CFENV
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#endif
#elif defined(__GLIBCXX__) // libstdc++
#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
#ifdef __clang__
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CFENV)
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#else
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#if HALF_GCC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CFENV)
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#endif
#endif
#elif defined(_CPPLIB_VER) // Dinkumware/Visual C++
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
#endif
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_CSTDINT)
#define HALF_ENABLE_CPP11_CSTDINT 1
#endif
#if _CPPLIB_VER >= 520 && !defined(HALF_ENABLE_CPP11_HASH)
#define HALF_ENABLE_CPP11_HASH 1
#endif
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CMATH)
#define HALF_ENABLE_CPP11_CMATH 1
#endif
#if _CPPLIB_VER >= 610 && !defined(HALF_ENABLE_CPP11_CFENV)
#define HALF_ENABLE_CPP11_CFENV 1
#endif
#endif
#undef HALF_GCC_VERSION
#undef HALF_ICC_VERSION
// any error throwing C++ exceptions?
#if defined(HALF_ERRHANDLING_THROW_INVALID) || \
defined(HALF_ERRHANDLING_THROW_DIVBYZERO) || \
defined(HALF_ERRHANDLING_THROW_OVERFLOW) || \
defined(HALF_ERRHANDLING_THROW_UNDERFLOW) || \
defined(HALF_ERRHANDLING_THROW_INEXACT)
#define HALF_ERRHANDLING_THROWS 1
#endif
// any error handling enabled?
#define HALF_ERRHANDLING \
(HALF_ERRHANDLING_FLAGS || HALF_ERRHANDLING_ERRNO || \
HALF_ERRHANDLING_FENV || HALF_ERRHANDLING_THROWS)
#if HALF_ERRHANDLING
#define HALF_UNUSED_NOERR(name) name
#else
#define HALF_UNUSED_NOERR(name)
#endif
// support constexpr
#if HALF_ENABLE_CPP11_CONSTEXPR
#define HALF_CONSTEXPR constexpr
#define HALF_CONSTEXPR_CONST constexpr
#if HALF_ERRHANDLING
#define HALF_CONSTEXPR_NOERR
#else
#define HALF_CONSTEXPR_NOERR constexpr
#endif
#else
#define HALF_CONSTEXPR
#define HALF_CONSTEXPR_CONST const
#define HALF_CONSTEXPR_NOERR
#endif
// support noexcept
#if HALF_ENABLE_CPP11_NOEXCEPT
#define HALF_NOEXCEPT noexcept
#define HALF_NOTHROW noexcept
#else
#define HALF_NOEXCEPT
#define HALF_NOTHROW throw()
#endif
// support thread storage
#if HALF_ENABLE_CPP11_THREAD_LOCAL
#define HALF_THREAD_LOCAL thread_local
#else
#define HALF_THREAD_LOCAL static
#endif
#include <algorithm>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <istream>
#include <limits>
#include <ostream>
#include <stdexcept>
#include <utility>
#if HALF_ENABLE_CPP11_TYPE_TRAITS
#include <type_traits>
#endif
#if HALF_ENABLE_CPP11_CSTDINT
#include <cstdint>
#endif
#if HALF_ERRHANDLING_ERRNO
#include <cerrno>
#endif
#if HALF_ENABLE_CPP11_CFENV
#include <cfenv>
#endif
#if HALF_ENABLE_CPP11_HASH
#include <functional>
#endif
#ifndef HALF_ENABLE_F16C_INTRINSICS
/// Enable F16C intruction set intrinsics.
/// Defining this to 1 enables the use of [F16C compiler
/// intrinsics](https://en.wikipedia.org/wiki/F16C) for converting between
/// half-precision and single-precision values which may result in improved
/// performance. This will not perform additional checks for support of the F16C
/// instruction set, so an appropriate target platform is required when enabling
/// this feature.
///
/// Unless predefined it will be enabled automatically when the `__F16C__`
/// symbol is defined, which some compilers do on supporting platforms.
#define HALF_ENABLE_F16C_INTRINSICS __F16C__
#endif
#if HALF_ENABLE_F16C_INTRINSICS
#include <immintrin.h>
#endif
#ifdef HALF_DOXYGEN_ONLY
/// Type for internal floating-point computations.
/// This can be predefined to a built-in floating-point type (`float`, `double`
/// or `long double`) to override the internal half-precision implementation to
/// use this type for computing arithmetic operations and mathematical function
/// (if available). This can result in improved performance for arithmetic
/// operators and mathematical functions but might cause results to deviate from
/// the specified half-precision rounding mode and inhibits proper detection of
/// half-precision exceptions.
#define HALF_ARITHMETIC_TYPE (undefined)
/// Enable internal exception flags.
/// Defining this to 1 causes operations on half-precision values to raise
/// internal floating-point exception flags according to the IEEE 754 standard.
/// These can then be cleared and checked with clearexcept(), testexcept().
#define HALF_ERRHANDLING_FLAGS 0
/// Enable exception propagation to `errno`.
/// Defining this to 1 causes operations on half-precision values to propagate
/// floating-point exceptions to
/// [errno](https://en.cppreference.com/w/cpp/error/errno) from `<cerrno>`.
/// Specifically this will propagate domain errors as
/// [EDOM](https://en.cppreference.com/w/cpp/error/errno_macros) and pole,
/// overflow and underflow errors as
/// [ERANGE](https://en.cppreference.com/w/cpp/error/errno_macros). Inexact
/// errors won't be propagated.
#define HALF_ERRHANDLING_ERRNO 0
/// Enable exception propagation to built-in floating-point platform.
/// Defining this to 1 causes operations on half-precision values to propagate
/// floating-point exceptions to the built-in single- and double-precision
/// implementation's exception flags using the [C++11 floating-point environment
/// control](https://en.cppreference.com/w/cpp/numeric/fenv) from `<cfenv>`.
/// However, this does not work in reverse and single- or double-precision
/// exceptions will not raise the corresponding half-precision exception flags,
/// nor will explicitly clearing flags clear the corresponding built-in flags.
#define HALF_ERRHANDLING_FENV 0
/// Throw C++ exception on domain errors.
/// Defining this to a string literal causes operations on half-precision values
/// to throw a
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error)
/// with the specified message on domain errors.
#define HALF_ERRHANDLING_THROW_INVALID (undefined)
/// Throw C++ exception on pole errors.
/// Defining this to a string literal causes operations on half-precision values
/// to throw a
/// [std::domain_error](https://en.cppreference.com/w/cpp/error/domain_error)
/// with the specified message on pole errors.
#define HALF_ERRHANDLING_THROW_DIVBYZERO (undefined)
/// Throw C++ exception on overflow errors.
/// Defining this to a string literal causes operations on half-precision values
/// to throw a
/// [std::overflow_error](https://en.cppreference.com/w/cpp/error/overflow_error)
/// with the specified message on overflows.
#define HALF_ERRHANDLING_THROW_OVERFLOW (undefined)
/// Throw C++ exception on underflow errors.
/// Defining this to a string literal causes operations on half-precision values
/// to throw a
/// [std::underflow_error](https://en.cppreference.com/w/cpp/error/underflow_error)
/// with the specified message on underflows.
#define HALF_ERRHANDLING_THROW_UNDERFLOW (undefined)
/// Throw C++ exception on rounding errors.
/// Defining this to 1 causes operations on half-precision values to throw a
/// [std::range_error](https://en.cppreference.com/w/cpp/error/range_error) with
/// the specified message on general rounding errors.
#define HALF_ERRHANDLING_THROW_INEXACT (undefined)
#endif
#ifndef HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
/// Raise INEXACT exception on overflow.
/// Defining this to 1 (default) causes overflow errors to automatically raise
/// inexact exceptions in addition. These will be raised after any possible
/// handling of the underflow exception.
#define HALF_ERRHANDLING_OVERFLOW_TO_INEXACT 1
#endif
#ifndef HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
/// Raise INEXACT exception on underflow.
/// Defining this to 1 (default) causes underflow errors to automatically raise
/// inexact exceptions in addition. These will be raised after any possible
/// handling of the underflow exception.
///
/// **Note:** This will actually cause underflow (and the accompanying inexact)
/// exceptions to be raised *only* when the result is inexact, while if disabled
/// bare underflow errors will be raised for *any* (possibly exact) subnormal
/// result.
#define HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT 1
#endif
/// Default rounding mode.
/// This specifies the rounding mode used for all conversions between
/// [half](\ref half_float::half)s and more precise types (unless using
/// half_cast() and specifying the rounding mode directly) as well as in
/// arithmetic operations and mathematical functions. It can be redefined
/// (before including half.hpp) to one of the standard rounding modes using
/// their respective constants or the equivalent values of
/// [std::float_round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/float_round_style):
///
/// `std::float_round_style` | value | rounding
/// ---------------------------------|-------|-------------------------
/// `std::round_indeterminate` | -1 | fastest
/// `std::round_toward_zero` | 0 | toward zero
/// `std::round_to_nearest` | 1 | to nearest (default)
/// `std::round_toward_infinity` | 2 | toward positive infinity
/// `std::round_toward_neg_infinity` | 3 | toward negative infinity
///
/// By default this is set to `1` (`std::round_to_nearest`), which rounds
/// results to the nearest representable value. It can even be set to
/// [std::numeric_limits<float>::round_style](https://en.cppreference.com/w/cpp/types/numeric_limits/round_style)
/// to synchronize the rounding mode with that of the built-in single-precision
/// implementation (which is likely `std::round_to_nearest`, though).
#ifndef HALF_ROUND_STYLE
#define HALF_ROUND_STYLE 1 // = std::round_to_nearest
#endif
/// Value signaling overflow.
/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to
/// a positive value signaling the overflow of an operation, in particular it
/// just evaluates to positive infinity.
///
/// **See also:** Documentation for
/// [HUGE_VAL](https://en.cppreference.com/w/cpp/numeric/math/HUGE_VAL)
#define HUGE_VALH std::numeric_limits<half_float::half>::infinity()
/// Fast half-precision fma function.
/// This symbol is defined if the fma() function generally executes as fast as,
/// or faster than, a separate half-precision multiplication followed by an
/// addition, which is always the case.
///
/// **See also:** Documentation for
/// [FP_FAST_FMA](https://en.cppreference.com/w/cpp/numeric/math/fma)
#define FP_FAST_FMAH 1
/// Half rounding mode.
/// In correspondence with `FLT_ROUNDS` from `<cfloat>` this symbol expands to
/// the rounding mode used for half-precision operations. It is an alias for
/// [HALF_ROUND_STYLE](\ref HALF_ROUND_STYLE).
///
/// **See also:** Documentation for
/// [FLT_ROUNDS](https://en.cppreference.com/w/cpp/types/climits/FLT_ROUNDS)
#define HLF_ROUNDS HALF_ROUND_STYLE
#ifndef FP_ILOGB0
#define FP_ILOGB0 INT_MIN
#endif
#ifndef FP_ILOGBNAN
#define FP_ILOGBNAN INT_MAX
#endif
#ifndef FP_SUBNORMAL
#define FP_SUBNORMAL 0
#endif
#ifndef FP_ZERO
#define FP_ZERO 1
#endif
#ifndef FP_NAN
#define FP_NAN 2
#endif
#ifndef FP_INFINITE
#define FP_INFINITE 3
#endif
#ifndef FP_NORMAL
#define FP_NORMAL 4
#endif
#if !HALF_ENABLE_CPP11_CFENV && !defined(FE_ALL_EXCEPT)
#define FE_INVALID 0x10
#define FE_DIVBYZERO 0x08
#define FE_OVERFLOW 0x04
#define FE_UNDERFLOW 0x02
#define FE_INEXACT 0x01
#define FE_ALL_EXCEPT \
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW | FE_INEXACT)
#endif
/// Main namespace for half-precision functionality.
/// This namespace contains all the functionality provided by the library.
namespace half_float {
class half;
#if HALF_ENABLE_CPP11_USER_LITERALS
/// Library-defined half-precision literals.
/// Import this namespace to enable half-precision floating-point literals:
/// ~~~~{.cpp}
/// using namespace half_float::literal;
/// half_float::half = 4.2_h;
/// ~~~~
namespace literal {
half operator"" _h(long double);
}
#endif
/// \internal
/// \brief Implementation details.
namespace detail {
#if HALF_ENABLE_CPP11_TYPE_TRAITS
/// Conditional type.
template <bool B, typename T, typename F>
struct conditional : std::conditional<B, T, F> {};
/// Helper for tag dispatching.
template <bool B>
struct bool_type : std::integral_constant<bool, B> {};
using std::false_type;
using std::true_type;
/// Type traits for floating-point types.
template <typename T>
struct is_float : std::is_floating_point<T> {};
#else
/// Conditional type.
template <bool, typename T, typename>
struct conditional {
typedef T type;
};
template <typename T, typename F>
struct conditional<false, T, F> {
typedef F type;
};
/// Helper for tag dispatching.
template <bool>
struct bool_type {};
typedef bool_type<true> true_type;
typedef bool_type<false> false_type;
/// Type traits for floating-point types.
template <typename>
struct is_float : false_type {};
template <typename T>
struct is_float<const T> : is_float<T> {};
template <typename T>
struct is_float<volatile T> : is_float<T> {};
template <typename T>
struct is_float<const volatile T> : is_float<T> {};
template <>
struct is_float<float> : true_type {};
template <>
struct is_float<double> : true_type {};
template <>
struct is_float<long double> : true_type {};
#endif
/// Type traits for floating-point bits.
template <typename T>
struct bits {
typedef unsigned char type;
};
template <typename T>
struct bits<const T> : bits<T> {};
template <typename T>
struct bits<volatile T> : bits<T> {};
template <typename T>
struct bits<const volatile T> : bits<T> {};
#if HALF_ENABLE_CPP11_CSTDINT
/// Unsigned integer of (at least) 16 bits width.
typedef std::uint_least16_t uint16;
/// Fastest unsigned integer of (at least) 32 bits width.
typedef std::uint_fast32_t uint32;
/// Fastest signed integer of (at least) 32 bits width.
typedef std::int_fast32_t int32;
/// Unsigned integer of (at least) 32 bits width.
template <>
struct bits<float> {
typedef std::uint_least32_t type;
};
/// Unsigned integer of (at least) 64 bits width.
template <>
struct bits<double> {
typedef std::uint_least64_t type;
};
#else
/// Unsigned integer of (at least) 16 bits width.
typedef unsigned short uint16;
/// Fastest unsigned integer of (at least) 32 bits width.
typedef unsigned long uint32;
/// Fastest unsigned integer of (at least) 32 bits width.
typedef long int32;
/// Unsigned integer of (at least) 32 bits width.
template <>
struct bits<float>
: conditional<std::numeric_limits<unsigned int>::digits >= 32, unsigned int,
unsigned long> {};
#if HALF_ENABLE_CPP11_LONG_LONG
/// Unsigned integer of (at least) 64 bits width.
template <>
struct bits<double>
: conditional<std::numeric_limits<unsigned long>::digits >= 64,
unsigned long, unsigned long long> {};
#else
/// Unsigned integer of (at least) 64 bits width.
template <>
struct bits<double> {
typedef unsigned long type;
};
#endif
#endif
#ifdef HALF_ARITHMETIC_TYPE
/// Type to use for arithmetic computations and mathematic functions internally.
typedef HALF_ARITHMETIC_TYPE internal_t;
#endif
/// Tag type for binary construction.
struct binary_t {};
/// Tag for binary construction.
HALF_CONSTEXPR_CONST binary_t binary = binary_t();
/// \name Implementation defined classification and arithmetic
/// \{
/// Check for infinity.
/// \tparam T argument type (builtin floating-point type)
/// \param arg value to query
/// \retval true if infinity
/// \retval false else
template <typename T>
bool builtin_isinf(T arg) {
#if HALF_ENABLE_CPP11_CMATH
return std::isinf(arg);
#elif defined(_MSC_VER)
return !::_finite(static_cast<double>(arg)) &&
!::_isnan(static_cast<double>(arg));
#else
return arg == std::numeric_limits<T>::infinity() ||
arg == -std::numeric_limits<T>::infinity();
#endif
}
/// Check for NaN.
/// \tparam T argument type (builtin floating-point type)
/// \param arg value to query
/// \retval true if not a number
/// \retval false else
template <typename T>
bool builtin_isnan(T arg) {
#if HALF_ENABLE_CPP11_CMATH
return std::isnan(arg);
#elif defined(_MSC_VER)
return ::_isnan(static_cast<double>(arg)) != 0;
#else
return arg != arg;
#endif
}
/// Check sign.
/// \tparam T argument type (builtin floating-point type)
/// \param arg value to query
/// \retval true if signbit set
/// \retval false else
template <typename T>
bool builtin_signbit(T arg) {
#if HALF_ENABLE_CPP11_CMATH
return std::signbit(arg);
#else
return arg < T() || (arg == T() && T(1) / arg < T());
#endif
}
/// Platform-independent sign mask.
/// \param arg integer value in two's complement
/// \retval -1 if \a arg negative
/// \retval 0 if \a arg positive
inline uint32 sign_mask(uint32 arg) {
static const int N = std::numeric_limits<uint32>::digits - 1;
#if HALF_TWOS_COMPLEMENT_INT
return static_cast<int32>(arg) >> N;
#else
return -((arg >> N) & 1);
#endif
}
/// Platform-independent arithmetic right shift.
/// \param arg integer value in two's complement
/// \param i shift amount (at most 31)
/// \return \a arg right shifted for \a i bits with possible sign extension
inline uint32 arithmetic_shift(uint32 arg, int i) {
#if HALF_TWOS_COMPLEMENT_INT
return static_cast<int32>(arg) >> i;
#else
return static_cast<int32>(arg) / (static_cast<int32>(1) << i) -
((arg >> (std::numeric_limits<uint32>::digits - 1)) & 1);
#endif
}
/// \}
/// \name Error handling
/// \{
/// Internal exception flags.
/// \return reference to global exception flags
inline int &errflags() {
HALF_THREAD_LOCAL int flags = 0;
return flags;
}
/// Raise floating-point exception.
/// \param flags exceptions to raise
/// \param cond condition to raise exceptions for
inline void raise(int HALF_UNUSED_NOERR(flags),
bool HALF_UNUSED_NOERR(cond) = true) {
#if HALF_ERRHANDLING
if (!cond) return;
#if HALF_ERRHANDLING_FLAGS
errflags() |= flags;
#endif
#if HALF_ERRHANDLING_ERRNO
if (flags & FE_INVALID)
errno = EDOM;
else if (flags & (FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW))
errno = ERANGE;
#endif
#if HALF_ERRHANDLING_FENV && HALF_ENABLE_CPP11_CFENV
std::feraiseexcept(flags);
#endif
#ifdef HALF_ERRHANDLING_THROW_INVALID
if (flags & FE_INVALID)
throw std::domain_error(HALF_ERRHANDLING_THROW_INVALID);
#endif
#ifdef HALF_ERRHANDLING_THROW_DIVBYZERO
if (flags & FE_DIVBYZERO)
throw std::domain_error(HALF_ERRHANDLING_THROW_DIVBYZERO);
#endif
#ifdef HALF_ERRHANDLING_THROW_OVERFLOW
if (flags & FE_OVERFLOW)
throw std::overflow_error(HALF_ERRHANDLING_THROW_OVERFLOW);
#endif
#ifdef HALF_ERRHANDLING_THROW_UNDERFLOW
if (flags & FE_UNDERFLOW)
throw std::underflow_error(HALF_ERRHANDLING_THROW_UNDERFLOW);
#endif
#ifdef HALF_ERRHANDLING_THROW_INEXACT
if (flags & FE_INEXACT)
throw std::range_error(HALF_ERRHANDLING_THROW_INEXACT);
#endif
#if HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
if ((flags & FE_UNDERFLOW) && !(flags & FE_INEXACT)) raise(FE_INEXACT);
#endif
#if HALF_ERRHANDLING_OVERFLOW_TO_INEXACT
if ((flags & FE_OVERFLOW) && !(flags & FE_INEXACT)) raise(FE_INEXACT);
#endif
#endif
}
/// Check and signal for any NaN.
/// \param x first half-precision value to check
/// \param y second half-precision value to check
/// \retval true if either \a x or \a y is NaN
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool compsignal(unsigned int x, unsigned int y) {
#if HALF_ERRHANDLING
raise(FE_INVALID, (x & 0x7FFF) > 0x7C00 || (y & 0x7FFF) > 0x7C00);
#endif
return (x & 0x7FFF) > 0x7C00 || (y & 0x7FFF) > 0x7C00;
}
/// Signal and silence signaling NaN.
/// \param nan half-precision NaN value
/// \return quiet NaN
/// \exception FE_INVALID if \a nan is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int nan) {
#if HALF_ERRHANDLING
raise(FE_INVALID, !(nan & 0x200));
#endif
return nan | 0x200;
}
/// Signal and silence signaling NaNs.
/// \param x first half-precision value to check
/// \param y second half-precision value to check
/// \return quiet NaN
/// \exception FE_INVALID if \a x or \a y is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x,
unsigned int y) {
#if HALF_ERRHANDLING
raise(FE_INVALID, ((x & 0x7FFF) > 0x7C00 && !(x & 0x200)) ||
((y & 0x7FFF) > 0x7C00 && !(y & 0x200)));
#endif
return ((x & 0x7FFF) > 0x7C00) ? (x | 0x200) : (y | 0x200);
}
/// Signal and silence signaling NaNs.
/// \param x first half-precision value to check
/// \param y second half-precision value to check
/// \param z third half-precision value to check
/// \return quiet NaN
/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int signal(unsigned int x, unsigned int y,
unsigned int z) {
#if HALF_ERRHANDLING
raise(FE_INVALID, ((x & 0x7FFF) > 0x7C00 && !(x & 0x200)) ||
((y & 0x7FFF) > 0x7C00 && !(y & 0x200)) ||
((z & 0x7FFF) > 0x7C00 && !(z & 0x200)));
#endif
return ((x & 0x7FFF) > 0x7C00)
? (x | 0x200)
: ((y & 0x7FFF) > 0x7C00) ? (y | 0x200) : (z | 0x200);
}
/// Select value or signaling NaN.
/// \param x preferred half-precision value
/// \param y ignored half-precision value except for signaling NaN
/// \return \a y if signaling NaN, \a x otherwise
/// \exception FE_INVALID if \a y is signaling NaN
inline HALF_CONSTEXPR_NOERR unsigned int select(
unsigned int x, unsigned int HALF_UNUSED_NOERR(y)) {
#if HALF_ERRHANDLING
return (((y & 0x7FFF) > 0x7C00) && !(y & 0x200)) ? signal(y) : x;
#else
return x;
#endif
}
/// Raise domain error and return NaN.
/// return quiet NaN
/// \exception FE_INVALID
inline HALF_CONSTEXPR_NOERR unsigned int invalid() {
#if HALF_ERRHANDLING
raise(FE_INVALID);
#endif
return 0x7FFF;
}
/// Raise pole error and return infinity.
/// \param sign half-precision value with sign bit only
/// \return half-precision infinity with sign of \a sign
/// \exception FE_DIVBYZERO
inline HALF_CONSTEXPR_NOERR unsigned int pole(unsigned int sign = 0) {
#if HALF_ERRHANDLING
raise(FE_DIVBYZERO);
#endif
return sign | 0x7C00;
}
/// Check value for underflow.
/// \param arg non-zero half-precision value to check
/// \return \a arg
/// \exception FE_UNDERFLOW if arg is subnormal
inline HALF_CONSTEXPR_NOERR unsigned int check_underflow(unsigned int arg) {
#if HALF_ERRHANDLING && !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT
raise(FE_UNDERFLOW, !(arg & 0x7C00));
#endif
return arg;
}
/// \}
/// \name Conversion and rounding
/// \{
/// Half-precision overflow.
/// \tparam R rounding mode to use
/// \param sign half-precision value with sign bit only
/// \return rounded overflowing half-precision value
/// \exception FE_OVERFLOW
template <std::float_round_style R>
HALF_CONSTEXPR_NOERR unsigned int overflow(unsigned int sign = 0) {
#if HALF_ERRHANDLING
raise(FE_OVERFLOW);
#endif
return (R == std::round_toward_infinity)
? (sign + 0x7C00 - (sign >> 15))
: (R == std::round_toward_neg_infinity)
? (sign + 0x7BFF + (sign >> 15))
: (R == std::round_toward_zero) ? (sign | 0x7BFF)
: (sign | 0x7C00);
}
/// Half-precision underflow.
/// \tparam R rounding mode to use
/// \param sign half-precision value with sign bit only
/// \return rounded underflowing half-precision value
/// \exception FE_UNDERFLOW
template <std::float_round_style R>
HALF_CONSTEXPR_NOERR unsigned int underflow(unsigned int sign = 0) {
#if HALF_ERRHANDLING
raise(FE_UNDERFLOW);
#endif
return (R == std::round_toward_infinity)
? (sign + 1 - (sign >> 15))
: (R == std::round_toward_neg_infinity) ? (sign + (sign >> 15))
: sign;
}
/// Round half-precision number.
/// \tparam R rounding mode to use
/// \tparam I `true` to always raise INEXACT exception, `false` to raise only
/// for rounded results \param value finite half-precision number to round
/// \param g guard bit (most significant discarded bit)
/// \param s sticky bit (or of all but the most significant discarded bits)
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
template <std::float_round_style R, bool I>
HALF_CONSTEXPR_NOERR unsigned int rounded(unsigned int value, int g, int s) {
#if HALF_ERRHANDLING
value += (R == std::round_to_nearest)
? (g & (s | value))
: (R == std::round_toward_infinity)
? (~(value >> 15) & (g | s))
: (R == std::round_toward_neg_infinity)
? ((value >> 15) & (g | s))
: 0;
if ((value & 0x7C00) == 0x7C00)
raise(FE_OVERFLOW);
else if (value & 0x7C00)
raise(FE_INEXACT, I || (g | s) != 0);
else
raise(FE_UNDERFLOW,
!(HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT) || I || (g | s) != 0);
return value;
#else
return (R == std::round_to_nearest)
? (value + (g & (s | value)))
: (R == std::round_toward_infinity)
? (value + (~(value >> 15) & (g | s)))
: (R == std::round_toward_neg_infinity)
? (value + ((value >> 15) & (g | s)))
: value;
#endif
}
/// Round half-precision number to nearest integer value.
/// \tparam R rounding mode to use
/// \tparam E `true` for round to even, `false` for round away from zero
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never
/// raise it \param value half-precision value to round \return half-precision
/// bits for nearest integral value \exception FE_INVALID for signaling NaN
/// \exception FE_INEXACT if value had to be rounded and \a I is `true`
template <std::float_round_style R, bool E, bool I>
unsigned int integral(unsigned int value) {
unsigned int abs = value & 0x7FFF;
if (abs < 0x3C00) {
raise(FE_INEXACT, I);
return ((R == std::round_to_nearest)
? (0x3C00 & -static_cast<unsigned>(abs >= (0x3800 + E)))
: (R == std::round_toward_infinity)
? (0x3C00 & -(~(value >> 15) & (abs != 0)))
: (R == std::round_toward_neg_infinity)
? (0x3C00 & -static_cast<unsigned>(value > 0x8000))
: 0) |
(value & 0x8000);
}
if (abs >= 0x6400) return (abs > 0x7C00) ? signal(value) : value;
unsigned int exp = 25 - (abs >> 10), mask = (1 << exp) - 1;
raise(FE_INEXACT, I && (value & mask));
return (((R == std::round_to_nearest)
? ((1 << (exp - 1)) - (~(value >> exp) & E))
: (R == std::round_toward_infinity)
? (mask & ((value >> 15) - 1))
: (R == std::round_toward_neg_infinity)
? (mask & -(value >> 15))
: 0) +
value) &
~mask;
}
/// Convert fixed point to half-precision floating-point.
/// \tparam R rounding mode to use
/// \tparam F number of fractional bits in [11,31]
/// \tparam S `true` for signed, `false` for unsigned
/// \tparam N `true` for additional normalization step, `false` if already
/// normalized to 1.F \tparam I `true` to always raise INEXACT exception,
/// `false` to raise only for rounded results \param m mantissa in Q1.F fixed
/// point format \param exp biased exponent - 1 \param sign half-precision value
/// with sign bit only \param s sticky bit (or of all but the most significant
/// already discarded bits) \return value converted to half-precision \exception
/// FE_OVERFLOW on overflows \exception FE_UNDERFLOW on underflows \exception
/// FE_INEXACT if value had to be rounded or \a I is `true`
template <std::float_round_style R, unsigned int F, bool S, bool N, bool I>
unsigned int fixed2half(uint32 m, int exp = 14, unsigned int sign = 0,
int s = 0) {
if (S) {
uint32 msign = sign_mask(m);
m = (m ^ msign) - msign;
sign = msign & 0x8000;
}
if (N)
for (; m < (static_cast<uint32>(1) << F) && exp; m <<= 1, --exp)
;
else if (exp < 0)
return rounded<R, I>(
sign + (m >> (F - 10 - exp)), (m >> (F - 11 - exp)) & 1,
s | ((m & ((static_cast<uint32>(1) << (F - 11 - exp)) - 1)) != 0));
return rounded<R, I>(
sign + (exp << 10) + (m >> (F - 10)), (m >> (F - 11)) & 1,
s | ((m & ((static_cast<uint32>(1) << (F - 11)) - 1)) != 0));
}
/// Convert IEEE single-precision to half-precision.
/// Credit for this goes to [Jeroen van der
/// Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). \tparam R
/// rounding mode to use \param value single-precision value to convert \return
/// rounded half-precision value \exception FE_OVERFLOW on overflows \exception
/// FE_UNDERFLOW on underflows \exception FE_INEXACT if value had to be rounded
template <std::float_round_style R>
unsigned int float2half_impl(float value, true_type) {
#if HALF_ENABLE_F16C_INTRINSICS
return _mm_cvtsi128_si32(_mm_cvtps_ph(
_mm_set_ss(value), (R == std::round_to_nearest)
? _MM_FROUND_TO_NEAREST_INT
: (R == std::round_toward_zero)
? _MM_FROUND_TO_ZERO
: (R == std::round_toward_infinity)
? _MM_FROUND_TO_POS_INF
: (R == std::round_toward_neg_infinity)
? _MM_FROUND_TO_NEG_INF
: _MM_FROUND_CUR_DIRECTION));
#else
bits<float>::type fbits;
std::memcpy(&fbits, &value, sizeof(float));
#if 1
unsigned int sign = (fbits >> 16) & 0x8000;
fbits &= 0x7FFFFFFF;
if (fbits >= 0x7F800000)
return sign | 0x7C00 |
((fbits > 0x7F800000) ? (0x200 | ((fbits >> 13) & 0x3FF)) : 0);
if (fbits >= 0x47800000) return overflow<R>(sign);
if (fbits >= 0x38800000)
return rounded<R, false>(
sign | (((fbits >> 23) - 112) << 10) | ((fbits >> 13) & 0x3FF),
(fbits >> 12) & 1, (fbits & 0xFFF) != 0);
if (fbits >= 0x33000000) {
int i = 125 - (fbits >> 23);
fbits = (fbits & 0x7FFFFF) | 0x800000;
return rounded<R, false>(
sign | (fbits >> (i + 1)), (fbits >> i) & 1,
(fbits & ((static_cast<uint32>(1) << i) - 1)) != 0);
}
if (fbits != 0) return underflow<R>(sign);
return sign;
#else
static const uint16 base_table[512] = {
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010,
0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x0C00, 0x1000,
0x1400, 0x1800, 0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400,
0x3800, 0x3C00, 0x4000, 0x4400, 0x4800, 0x4C00, 0x5000, 0x5400, 0x5800,
0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00, 0x7000, 0x7400, 0x7800, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF, 0x7BFF,
0x7BFF, 0x7BFF, 0x7BFF, 0x7C00, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001,
0x8002, 0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 0x8200,
0x8400, 0x8800, 0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400,
0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, 0xC000, 0xC400, 0xC800,
0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00, 0xE000, 0xE400, 0xE800, 0xEC00,
0xF000, 0xF400, 0xF800, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF,
0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFBFF, 0xFC00};
static const unsigned char shift_table[256] = {
24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 23, 22, 21, 20, 19,
18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 13};
int sexp = fbits >> 23, exp = sexp & 0xFF, i = shift_table[exp];
fbits &= 0x7FFFFF;
uint32 m = (fbits | ((exp != 0) << 23)) & -static_cast<uint32>(exp != 0xFF);
return rounded<R, false>(
base_table[sexp] + (fbits >> i), (m >> (i - 1)) & 1,
(((static_cast<uint32>(1) << (i - 1)) - 1) & m) != 0);
#endif
#endif
}
/// Convert IEEE double-precision to half-precision.
/// \tparam R rounding mode to use
/// \param value double-precision value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template <std::float_round_style R>
unsigned int float2half_impl(double value, true_type) {
#if HALF_ENABLE_F16C_INTRINSICS
if (R == std::round_indeterminate)
return _mm_cvtsi128_si32(_mm_cvtps_ph(_mm_cvtpd_ps(_mm_set_sd(value)),
_MM_FROUND_CUR_DIRECTION));
#endif
bits<double>::type dbits;
std::memcpy(&dbits, &value, sizeof(double));
uint32 hi = dbits >> 32, lo = dbits & 0xFFFFFFFF;
unsigned int sign = (hi >> 16) & 0x8000;
hi &= 0x7FFFFFFF;
if (hi >= 0x7FF00000)
return sign | 0x7C00 |
((dbits & 0xFFFFFFFFFFFFF) ? (0x200 | ((hi >> 10) & 0x3FF)) : 0);
if (hi >= 0x40F00000) return overflow<R>(sign);
if (hi >= 0x3F100000)
return rounded<R, false>(
sign | (((hi >> 20) - 1008) << 10) | ((hi >> 10) & 0x3FF),
(hi >> 9) & 1, ((hi & 0x1FF) | lo) != 0);
if (hi >= 0x3E600000) {
int i = 1018 - (hi >> 20);
hi = (hi & 0xFFFFF) | 0x100000;
return rounded<R, false>(
sign | (hi >> (i + 1)), (hi >> i) & 1,
((hi & ((static_cast<uint32>(1) << i) - 1)) | lo) != 0);
}
if ((hi | lo) != 0) return underflow<R>(sign);
return sign;
}
/// Convert non-IEEE floating-point to half-precision.
/// \tparam R rounding mode to use
/// \tparam T source type (builtin floating-point type)
/// \param value floating-point value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template <std::float_round_style R, typename T>
unsigned int float2half_impl(T value, ...) {
unsigned int hbits = static_cast<unsigned>(builtin_signbit(value)) << 15;
if (value == T()) return hbits;
if (builtin_isnan(value)) return hbits | 0x7FFF;
if (builtin_isinf(value)) return hbits | 0x7C00;
int exp;
std::frexp(value, &exp);
if (exp > 16) return overflow<R>(hbits);
if (exp < -13)
value = std::ldexp(value, 25);
else {
value = std::ldexp(value, 12 - exp);
hbits |= ((exp + 13) << 10);
}
T ival, frac = std::modf(value, &ival);
int m = std::abs(static_cast<int>(ival));
return rounded<R, false>(hbits + (m >> 1), m & 1, frac != T());
}
/// Convert floating-point to half-precision.
/// \tparam R rounding mode to use
/// \tparam T source type (builtin floating-point type)
/// \param value floating-point value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template <std::float_round_style R, typename T>
unsigned int float2half(T value) {
return float2half_impl<R>(
value, bool_type < std::numeric_limits<T>::is_iec559 &&
sizeof(typename bits<T>::type) == sizeof(T) > ());
}
/// Convert integer to half-precision floating-point.
/// \tparam R rounding mode to use
/// \tparam T type to convert (builtin integer type)
/// \param value integral value to convert
/// \return rounded half-precision value
/// \exception FE_OVERFLOW on overflows
/// \exception FE_INEXACT if value had to be rounded
template <std::float_round_style R, typename T>
unsigned int int2half(T value) {
unsigned int bits = static_cast<unsigned>(value < 0) << 15;
if (!value) return bits;
if (bits) value = -value;
if (value > 0xFFFF) return overflow<R>(bits);
unsigned int m = static_cast<unsigned int>(value), exp = 24;
for (; m < 0x400; m <<= 1, --exp)
;
for (; m > 0x7FF; m >>= 1, ++exp)
;
bits |= (exp << 10) + m;
return (exp > 24) ? rounded<R, false>(bits, (value >> (exp - 25)) & 1,
(((1 << (exp - 25)) - 1) & value) != 0)
: bits;
}
/// Convert half-precision to IEEE single-precision.
/// Credit for this goes to [Jeroen van der
/// Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf). \param
/// value half-precision value to convert \return single-precision value
inline float half2float_impl(unsigned int value, float, true_type) {
#if HALF_ENABLE_F16C_INTRINSICS
return _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(value)));
#else
#if 0
bits<float>::type fbits = static_cast<bits<float>::type>(value&0x8000) << 16;
int abs = value & 0x7FFF;
if(abs)
{
fbits |= 0x38000000 << static_cast<unsigned>(abs>=0x7C00);
for(; abs<0x400; abs<<=1,fbits-=0x800000) ;
fbits += static_cast<bits<float>::type>(abs) << 13;
}
#else
static const bits<float>::type mantissa_table[2048] = {
0x00000000, 0x33800000, 0x34000000, 0x34400000, 0x34800000, 0x34A00000,
0x34C00000, 0x34E00000, 0x35000000, 0x35100000, 0x35200000, 0x35300000,
0x35400000, 0x35500000, 0x35600000, 0x35700000, 0x35800000, 0x35880000,
0x35900000, 0x35980000, 0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000,
0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000, 0x35E00000, 0x35E80000,
0x35F00000, 0x35F80000, 0x36000000, 0x36040000, 0x36080000, 0x360C0000,
0x36100000, 0x36140000, 0x36180000, 0x361C0000, 0x36200000, 0x36240000,
0x36280000, 0x362C0000, 0x36300000, 0x36340000, 0x36380000, 0x363C0000,
0x36400000, 0x36440000, 0x36480000, 0x364C0000, 0x36500000, 0x36540000,
0x36580000, 0x365C0000, 0x36600000, 0x36640000, 0x36680000, 0x366C0000,
0x36700000, 0x36740000, 0x36780000, 0x367C0000, 0x36800000, 0x36820000,
0x36840000, 0x36860000, 0x36880000, 0x368A0000, 0x368C0000, 0x368E0000,
0x36900000, 0x36920000, 0x36940000, 0x36960000, 0x36980000, 0x369A0000,
0x369C0000, 0x369E0000, 0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000,
0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000, 0x36B00000, 0x36B20000,
0x36B40000, 0x36B60000, 0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000,
0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000, 0x36C80000, 0x36CA0000,
0x36CC0000, 0x36CE0000, 0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000,
0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000, 0x36E00000, 0x36E20000,
0x36E40000, 0x36E60000, 0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000,
0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000, 0x36F80000, 0x36FA0000,
0x36FC0000, 0x36FE0000, 0x37000000, 0x37010000, 0x37020000, 0x37030000,
0x37040000, 0x37050000, 0x37060000, 0x37070000, 0x37080000, 0x37090000,
0x370A0000, 0x370B0000, 0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000,
0x37100000, 0x37110000, 0x37120000, 0x37130000, 0x37140000, 0x37150000,
0x37160000, 0x37170000, 0x37180000, 0x37190000, 0x371A0000, 0x371B0000,
0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000, 0x37200000, 0x37210000,
0x37220000, 0x37230000, 0x37240000, 0x37250000, 0x37260000, 0x37270000,
0x37280000, 0x37290000, 0x372A0000, 0x372B0000, 0x372C0000, 0x372D0000,
0x372E0000, 0x372F0000, 0x37300000, 0x37310000, 0x37320000, 0x37330000,
0x37340000, 0x37350000, 0x37360000, 0x37370000, 0x37380000, 0x37390000,
0x373A0000, 0x373B0000, 0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000,
0x37400000, 0x37410000, 0x37420000, 0x37430000, 0x37440000, 0x37450000,
0x37460000, 0x37470000, 0x37480000, 0x37490000, 0x374A0000, 0x374B0000,
0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000, 0x37500000, 0x37510000,
0x37520000, 0x37530000, 0x37540000, 0x37550000, 0x37560000, 0x37570000,
0x37580000, 0x37590000, 0x375A0000, 0x375B0000, 0x375C0000, 0x375D0000,
0x375E0000, 0x375F0000, 0x37600000, 0x37610000, 0x37620000, 0x37630000,
0x37640000, 0x37650000, 0x37660000, 0x37670000, 0x37680000, 0x37690000,
0x376A0000, 0x376B0000, 0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000,
0x37700000, 0x37710000, 0x37720000, 0x37730000, 0x37740000, 0x37750000,
0x37760000, 0x37770000, 0x37780000, 0x37790000, 0x377A0000, 0x377B0000,
0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000, 0x37800000, 0x37808000,
0x37810000, 0x37818000, 0x37820000, 0x37828000, 0x37830000, 0x37838000,
0x37840000, 0x37848000, 0x37850000, 0x37858000, 0x37860000, 0x37868000,
0x37870000, 0x37878000, 0x37880000, 0x37888000, 0x37890000, 0x37898000,
0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000, 0x378C0000, 0x378C8000,
0x378D0000, 0x378D8000, 0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000,
0x37900000, 0x37908000, 0x37910000, 0x37918000, 0x37920000, 0x37928000,
0x37930000, 0x37938000, 0x37940000, 0x37948000, 0x37950000, 0x37958000,
0x37960000, 0x37968000, 0x37970000, 0x37978000, 0x37980000, 0x37988000,
0x37990000, 0x37998000, 0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000,
0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000, 0x379E0000, 0x379E8000,
0x379F0000, 0x379F8000, 0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000,
0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000, 0x37A40000, 0x37A48000,
0x37A50000, 0x37A58000, 0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000,
0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000, 0x37AA0000, 0x37AA8000,
0x37AB0000, 0x37AB8000, 0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000,
0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000, 0x37B00000, 0x37B08000,
0x37B10000, 0x37B18000, 0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000,
0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000, 0x37B60000, 0x37B68000,
0x37B70000, 0x37B78000, 0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000,
0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000, 0x37BC0000, 0x37BC8000,
0x37BD0000, 0x37BD8000, 0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000,
0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000, 0x37C20000, 0x37C28000,
0x37C30000, 0x37C38000, 0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000,
0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000, 0x37C80000, 0x37C88000,
0x37C90000, 0x37C98000, 0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000,
0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000, 0x37CE0000, 0x37CE8000,
0x37CF0000, 0x37CF8000, 0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000,
0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000, 0x37D40000, 0x37D48000,
0x37D50000, 0x37D58000, 0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000,
0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000, 0x37DA0000, 0x37DA8000,
0x37DB0000, 0x37DB8000, 0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000,
0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000, 0x37E00000, 0x37E08000,
0x37E10000, 0x37E18000, 0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000,
0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000, 0x37E60000, 0x37E68000,
0x37E70000, 0x37E78000, 0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000,
0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000, 0x37EC0000, 0x37EC8000,
0x37ED0000, 0x37ED8000, 0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000,
0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000, 0x37F20000, 0x37F28000,
0x37F30000, 0x37F38000, 0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000,
0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000, 0x37F80000, 0x37F88000,
0x37F90000, 0x37F98000, 0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000,
0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000, 0x37FE0000, 0x37FE8000,
0x37FF0000, 0x37FF8000, 0x38000000, 0x38004000, 0x38008000, 0x3800C000,
0x38010000, 0x38014000, 0x38018000, 0x3801C000, 0x38020000, 0x38024000,
0x38028000, 0x3802C000, 0x38030000, 0x38034000, 0x38038000, 0x3803C000,
0x38040000, 0x38044000, 0x38048000, 0x3804C000, 0x38050000, 0x38054000,
0x38058000, 0x3805C000, 0x38060000, 0x38064000, 0x38068000, 0x3806C000,
0x38070000, 0x38074000, 0x38078000, 0x3807C000, 0x38080000, 0x38084000,
0x38088000, 0x3808C000, 0x38090000, 0x38094000, 0x38098000, 0x3809C000,
0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000, 0x380B0000, 0x380B4000,
0x380B8000, 0x380BC000, 0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000,
0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000, 0x380E0000, 0x380E4000,
0x380E8000, 0x380EC000, 0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000,
0x38100000, 0x38104000, 0x38108000, 0x3810C000, 0x38110000, 0x38114000,
0x38118000, 0x3811C000, 0x38120000, 0x38124000, 0x38128000, 0x3812C000,
0x38130000, 0x38134000, 0x38138000, 0x3813C000, 0x38140000, 0x38144000,
0x38148000, 0x3814C000, 0x38150000, 0x38154000, 0x38158000, 0x3815C000,
0x38160000, 0x38164000, 0x38168000, 0x3816C000, 0x38170000, 0x38174000,
0x38178000, 0x3817C000, 0x38180000, 0x38184000, 0x38188000, 0x3818C000,
0x38190000, 0x38194000, 0x38198000, 0x3819C000, 0x381A0000, 0x381A4000,
0x381A8000, 0x381AC000, 0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000,
0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000, 0x381D0000, 0x381D4000,
0x381D8000, 0x381DC000, 0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000,
0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000, 0x38200000, 0x38204000,
0x38208000, 0x3820C000, 0x38210000, 0x38214000, 0x38218000, 0x3821C000,
0x38220000, 0x38224000, 0x38228000, 0x3822C000, 0x38230000, 0x38234000,
0x38238000, 0x3823C000, 0x38240000, 0x38244000, 0x38248000, 0x3824C000,
0x38250000, 0x38254000, 0x38258000, 0x3825C000, 0x38260000, 0x38264000,
0x38268000, 0x3826C000, 0x38270000, 0x38274000, 0x38278000, 0x3827C000,
0x38280000, 0x38284000, 0x38288000, 0x3828C000, 0x38290000, 0x38294000,
0x38298000, 0x3829C000, 0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000,
0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000, 0x382C0000, 0x382C4000,
0x382C8000, 0x382CC000, 0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000,
0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000, 0x382F0000, 0x382F4000,
0x382F8000, 0x382FC000, 0x38300000, 0x38304000, 0x38308000, 0x3830C000,
0x38310000, 0x38314000, 0x38318000, 0x3831C000, 0x38320000, 0x38324000,
0x38328000, 0x3832C000, 0x38330000, 0x38334000, 0x38338000, 0x3833C000,
0x38340000, 0x38344000, 0x38348000, 0x3834C000, 0x38350000, 0x38354000,
0x38358000, 0x3835C000, 0x38360000, 0x38364000, 0x38368000, 0x3836C000,
0x38370000, 0x38374000, 0x38378000, 0x3837C000, 0x38380000, 0x38384000,
0x38388000, 0x3838C000, 0x38390000, 0x38394000, 0x38398000, 0x3839C000,
0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000, 0x383B0000, 0x383B4000,
0x383B8000, 0x383BC000, 0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000,
0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000, 0x383E0000, 0x383E4000,
0x383E8000, 0x383EC000, 0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000,
0x38400000, 0x38404000, 0x38408000, 0x3840C000, 0x38410000, 0x38414000,
0x38418000, 0x3841C000, 0x38420000, 0x38424000, 0x38428000, 0x3842C000,
0x38430000, 0x38434000, 0x38438000, 0x3843C000, 0x38440000, 0x38444000,
0x38448000, 0x3844C000, 0x38450000, 0x38454000, 0x38458000, 0x3845C000,
0x38460000, 0x38464000, 0x38468000, 0x3846C000, 0x38470000, 0x38474000,
0x38478000, 0x3847C000, 0x38480000, 0x38484000, 0x38488000, 0x3848C000,
0x38490000, 0x38494000, 0x38498000, 0x3849C000, 0x384A0000, 0x384A4000,
0x384A8000, 0x384AC000, 0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000,
0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000, 0x384D0000, 0x384D4000,
0x384D8000, 0x384DC000, 0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000,
0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000, 0x38500000, 0x38504000,
0x38508000, 0x3850C000, 0x38510000, 0x38514000, 0x38518000, 0x3851C000,
0x38520000, 0x38524000, 0x38528000, 0x3852C000, 0x38530000, 0x38534000,
0x38538000, 0x3853C000, 0x38540000, 0x38544000, 0x38548000, 0x3854C000,
0x38550000, 0x38554000, 0x38558000, 0x3855C000, 0x38560000, 0x38564000,
0x38568000, 0x3856C000, 0x38570000, 0x38574000, 0x38578000, 0x3857C000,
0x38580000, 0x38584000, 0x38588000, 0x3858C000, 0x38590000, 0x38594000,
0x38598000, 0x3859C000, 0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000,
0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000, 0x385C0000, 0x385C4000,
0x385C8000, 0x385CC000, 0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000,
0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000, 0x385F0000, 0x385F4000,
0x385F8000, 0x385FC000, 0x38600000, 0x38604000, 0x38608000, 0x3860C000,
0x38610000, 0x38614000, 0x38618000, 0x3861C000, 0x38620000, 0x38624000,
0x38628000, 0x3862C000, 0x38630000, 0x38634000, 0x38638000, 0x3863C000,
0x38640000, 0x38644000, 0x38648000, 0x3864C000, 0x38650000, 0x38654000,
0x38658000, 0x3865C000, 0x38660000, 0x38664000, 0x38668000, 0x3866C000,
0x38670000, 0x38674000, 0x38678000, 0x3867C000, 0x38680000, 0x38684000,
0x38688000, 0x3868C000, 0x38690000, 0x38694000, 0x38698000, 0x3869C000,
0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000, 0x386B0000, 0x386B4000,
0x386B8000, 0x386BC000, 0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000,
0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000, 0x386E0000, 0x386E4000,
0x386E8000, 0x386EC000, 0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000,
0x38700000, 0x38704000, 0x38708000, 0x3870C000, 0x38710000, 0x38714000,
0x38718000, 0x3871C000, 0x38720000, 0x38724000, 0x38728000, 0x3872C000,
0x38730000, 0x38734000, 0x38738000, 0x3873C000, 0x38740000, 0x38744000,
0x38748000, 0x3874C000, 0x38750000, 0x38754000, 0x38758000, 0x3875C000,
0x38760000, 0x38764000, 0x38768000, 0x3876C000, 0x38770000, 0x38774000,
0x38778000, 0x3877C000, 0x38780000, 0x38784000, 0x38788000, 0x3878C000,
0x38790000, 0x38794000, 0x38798000, 0x3879C000, 0x387A0000, 0x387A4000,
0x387A8000, 0x387AC000, 0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000,
0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000, 0x387D0000, 0x387D4000,
0x387D8000, 0x387DC000, 0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000,
0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000, 0x38000000, 0x38002000,
0x38004000, 0x38006000, 0x38008000, 0x3800A000, 0x3800C000, 0x3800E000,
0x38010000, 0x38012000, 0x38014000, 0x38016000, 0x38018000, 0x3801A000,
0x3801C000, 0x3801E000, 0x38020000, 0x38022000, 0x38024000, 0x38026000,
0x38028000, 0x3802A000, 0x3802C000, 0x3802E000, 0x38030000, 0x38032000,
0x38034000, 0x38036000, 0x38038000, 0x3803A000, 0x3803C000, 0x3803E000,
0x38040000, 0x38042000, 0x38044000, 0x38046000, 0x38048000, 0x3804A000,
0x3804C000, 0x3804E000, 0x38050000, 0x38052000, 0x38054000, 0x38056000,
0x38058000, 0x3805A000, 0x3805C000, 0x3805E000, 0x38060000, 0x38062000,
0x38064000, 0x38066000, 0x38068000, 0x3806A000, 0x3806C000, 0x3806E000,
0x38070000, 0x38072000, 0x38074000, 0x38076000, 0x38078000, 0x3807A000,
0x3807C000, 0x3807E000, 0x38080000, 0x38082000, 0x38084000, 0x38086000,
0x38088000, 0x3808A000, 0x3808C000, 0x3808E000, 0x38090000, 0x38092000,
0x38094000, 0x38096000, 0x38098000, 0x3809A000, 0x3809C000, 0x3809E000,
0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000, 0x380A8000, 0x380AA000,
0x380AC000, 0x380AE000, 0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000,
0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000, 0x380C0000, 0x380C2000,
0x380C4000, 0x380C6000, 0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000,
0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000, 0x380D8000, 0x380DA000,
0x380DC000, 0x380DE000, 0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000,
0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000, 0x380F0000, 0x380F2000,
0x380F4000, 0x380F6000, 0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000,
0x38100000, 0x38102000, 0x38104000, 0x38106000, 0x38108000, 0x3810A000,
0x3810C000, 0x3810E000, 0x38110000, 0x38112000, 0x38114000, 0x38116000,
0x38118000, 0x3811A000, 0x3811C000, 0x3811E000, 0x38120000, 0x38122000,
0x38124000, 0x38126000, 0x38128000, 0x3812A000, 0x3812C000, 0x3812E000,
0x38130000, 0x38132000, 0x38134000, 0x38136000, 0x38138000, 0x3813A000,
0x3813C000, 0x3813E000, 0x38140000, 0x38142000, 0x38144000, 0x38146000,
0x38148000, 0x3814A000, 0x3814C000, 0x3814E000, 0x38150000, 0x38152000,
0x38154000, 0x38156000, 0x38158000, 0x3815A000, 0x3815C000, 0x3815E000,
0x38160000, 0x38162000, 0x38164000, 0x38166000, 0x38168000, 0x3816A000,
0x3816C000, 0x3816E000, 0x38170000, 0x38172000, 0x38174000, 0x38176000,
0x38178000, 0x3817A000, 0x3817C000, 0x3817E000, 0x38180000, 0x38182000,
0x38184000, 0x38186000, 0x38188000, 0x3818A000, 0x3818C000, 0x3818E000,
0x38190000, 0x38192000, 0x38194000, 0x38196000, 0x38198000, 0x3819A000,
0x3819C000, 0x3819E000, 0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000,
0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000, 0x381B0000, 0x381B2000,
0x381B4000, 0x381B6000, 0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000,
0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000, 0x381C8000, 0x381CA000,
0x381CC000, 0x381CE000, 0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000,
0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000, 0x381E0000, 0x381E2000,
0x381E4000, 0x381E6000, 0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000,
0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000, 0x381F8000, 0x381FA000,
0x381FC000, 0x381FE000, 0x38200000, 0x38202000, 0x38204000, 0x38206000,
0x38208000, 0x3820A000, 0x3820C000, 0x3820E000, 0x38210000, 0x38212000,
0x38214000, 0x38216000, 0x38218000, 0x3821A000, 0x3821C000, 0x3821E000,
0x38220000, 0x38222000, 0x38224000, 0x38226000, 0x38228000, 0x3822A000,
0x3822C000, 0x3822E000, 0x38230000, 0x38232000, 0x38234000, 0x38236000,
0x38238000, 0x3823A000, 0x3823C000, 0x3823E000, 0x38240000, 0x38242000,
0x38244000, 0x38246000, 0x38248000, 0x3824A000, 0x3824C000, 0x3824E000,
0x38250000, 0x38252000, 0x38254000, 0x38256000, 0x38258000, 0x3825A000,
0x3825C000, 0x3825E000, 0x38260000, 0x38262000, 0x38264000, 0x38266000,
0x38268000, 0x3826A000, 0x3826C000, 0x3826E000, 0x38270000, 0x38272000,
0x38274000, 0x38276000, 0x38278000, 0x3827A000, 0x3827C000, 0x3827E000,
0x38280000, 0x38282000, 0x38284000, 0x38286000, 0x38288000, 0x3828A000,
0x3828C000, 0x3828E000, 0x38290000, 0x38292000, 0x38294000, 0x38296000,
0x38298000, 0x3829A000, 0x3829C000, 0x3829E000, 0x382A0000, 0x382A2000,
0x382A4000, 0x382A6000, 0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000,
0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000, 0x382B8000, 0x382BA000,
0x382BC000, 0x382BE000, 0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000,
0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000, 0x382D0000, 0x382D2000,
0x382D4000, 0x382D6000, 0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000,
0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000, 0x382E8000, 0x382EA000,
0x382EC000, 0x382EE000, 0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000,
0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000, 0x38300000, 0x38302000,
0x38304000, 0x38306000, 0x38308000, 0x3830A000, 0x3830C000, 0x3830E000,
0x38310000, 0x38312000, 0x38314000, 0x38316000, 0x38318000, 0x3831A000,
0x3831C000, 0x3831E000, 0x38320000, 0x38322000, 0x38324000, 0x38326000,
0x38328000, 0x3832A000, 0x3832C000, 0x3832E000, 0x38330000, 0x38332000,
0x38334000, 0x38336000, 0x38338000, 0x3833A000, 0x3833C000, 0x3833E000,
0x38340000, 0x38342000, 0x38344000, 0x38346000, 0x38348000, 0x3834A000,
0x3834C000, 0x3834E000, 0x38350000, 0x38352000, 0x38354000, 0x38356000,
0x38358000, 0x3835A000, 0x3835C000, 0x3835E000, 0x38360000, 0x38362000,
0x38364000, 0x38366000, 0x38368000, 0x3836A000, 0x3836C000, 0x3836E000,
0x38370000, 0x38372000, 0x38374000, 0x38376000, 0x38378000, 0x3837A000,
0x3837C000, 0x3837E000, 0x38380000, 0x38382000, 0x38384000, 0x38386000,
0x38388000, 0x3838A000, 0x3838C000, 0x3838E000, 0x38390000, 0x38392000,
0x38394000, 0x38396000, 0x38398000, 0x3839A000, 0x3839C000, 0x3839E000,
0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000, 0x383A8000, 0x383AA000,
0x383AC000, 0x383AE000, 0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000,
0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000, 0x383C0000, 0x383C2000,
0x383C4000, 0x383C6000, 0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000,
0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000, 0x383D8000, 0x383DA000,
0x383DC000, 0x383DE000, 0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000,
0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000, 0x383F0000, 0x383F2000,
0x383F4000, 0x383F6000, 0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000,
0x38400000, 0x38402000, 0x38404000, 0x38406000, 0x38408000, 0x3840A000,
0x3840C000, 0x3840E000, 0x38410000, 0x38412000, 0x38414000, 0x38416000,
0x38418000, 0x3841A000, 0x3841C000, 0x3841E000, 0x38420000, 0x38422000,
0x38424000, 0x38426000, 0x38428000, 0x3842A000, 0x3842C000, 0x3842E000,
0x38430000, 0x38432000, 0x38434000, 0x38436000, 0x38438000, 0x3843A000,
0x3843C000, 0x3843E000, 0x38440000, 0x38442000, 0x38444000, 0x38446000,
0x38448000, 0x3844A000, 0x3844C000, 0x3844E000, 0x38450000, 0x38452000,
0x38454000, 0x38456000, 0x38458000, 0x3845A000, 0x3845C000, 0x3845E000,
0x38460000, 0x38462000, 0x38464000, 0x38466000, 0x38468000, 0x3846A000,
0x3846C000, 0x3846E000, 0x38470000, 0x38472000, 0x38474000, 0x38476000,
0x38478000, 0x3847A000, 0x3847C000, 0x3847E000, 0x38480000, 0x38482000,
0x38484000, 0x38486000, 0x38488000, 0x3848A000, 0x3848C000, 0x3848E000,
0x38490000, 0x38492000, 0x38494000, 0x38496000, 0x38498000, 0x3849A000,
0x3849C000, 0x3849E000, 0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000,
0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000, 0x384B0000, 0x384B2000,
0x384B4000, 0x384B6000, 0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000,
0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000, 0x384C8000, 0x384CA000,
0x384CC000, 0x384CE000, 0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000,
0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000, 0x384E0000, 0x384E2000,
0x384E4000, 0x384E6000, 0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000,
0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000, 0x384F8000, 0x384FA000,
0x384FC000, 0x384FE000, 0x38500000, 0x38502000, 0x38504000, 0x38506000,
0x38508000, 0x3850A000, 0x3850C000, 0x3850E000, 0x38510000, 0x38512000,
0x38514000, 0x38516000, 0x38518000, 0x3851A000, 0x3851C000, 0x3851E000,
0x38520000, 0x38522000, 0x38524000, 0x38526000, 0x38528000, 0x3852A000,
0x3852C000, 0x3852E000, 0x38530000, 0x38532000, 0x38534000, 0x38536000,
0x38538000, 0x3853A000, 0x3853C000, 0x3853E000, 0x38540000, 0x38542000,
0x38544000, 0x38546000, 0x38548000, 0x3854A000, 0x3854C000, 0x3854E000,
0x38550000, 0x38552000, 0x38554000, 0x38556000, 0x38558000, 0x3855A000,
0x3855C000, 0x3855E000, 0x38560000, 0x38562000, 0x38564000, 0x38566000,
0x38568000, 0x3856A000, 0x3856C000, 0x3856E000, 0x38570000, 0x38572000,
0x38574000, 0x38576000, 0x38578000, 0x3857A000, 0x3857C000, 0x3857E000,
0x38580000, 0x38582000, 0x38584000, 0x38586000, 0x38588000, 0x3858A000,
0x3858C000, 0x3858E000, 0x38590000, 0x38592000, 0x38594000, 0x38596000,
0x38598000, 0x3859A000, 0x3859C000, 0x3859E000, 0x385A0000, 0x385A2000,
0x385A4000, 0x385A6000, 0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000,
0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000, 0x385B8000, 0x385BA000,
0x385BC000, 0x385BE000, 0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000,
0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000, 0x385D0000, 0x385D2000,
0x385D4000, 0x385D6000, 0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000,
0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000, 0x385E8000, 0x385EA000,
0x385EC000, 0x385EE000, 0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000,
0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000, 0x38600000, 0x38602000,
0x38604000, 0x38606000, 0x38608000, 0x3860A000, 0x3860C000, 0x3860E000,
0x38610000, 0x38612000, 0x38614000, 0x38616000, 0x38618000, 0x3861A000,
0x3861C000, 0x3861E000, 0x38620000, 0x38622000, 0x38624000, 0x38626000,
0x38628000, 0x3862A000, 0x3862C000, 0x3862E000, 0x38630000, 0x38632000,
0x38634000, 0x38636000, 0x38638000, 0x3863A000, 0x3863C000, 0x3863E000,
0x38640000, 0x38642000, 0x38644000, 0x38646000, 0x38648000, 0x3864A000,
0x3864C000, 0x3864E000, 0x38650000, 0x38652000, 0x38654000, 0x38656000,
0x38658000, 0x3865A000, 0x3865C000, 0x3865E000, 0x38660000, 0x38662000,
0x38664000, 0x38666000, 0x38668000, 0x3866A000, 0x3866C000, 0x3866E000,
0x38670000, 0x38672000, 0x38674000, 0x38676000, 0x38678000, 0x3867A000,
0x3867C000, 0x3867E000, 0x38680000, 0x38682000, 0x38684000, 0x38686000,
0x38688000, 0x3868A000, 0x3868C000, 0x3868E000, 0x38690000, 0x38692000,
0x38694000, 0x38696000, 0x38698000, 0x3869A000, 0x3869C000, 0x3869E000,
0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000, 0x386A8000, 0x386AA000,
0x386AC000, 0x386AE000, 0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000,
0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000, 0x386C0000, 0x386C2000,
0x386C4000, 0x386C6000, 0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000,
0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000, 0x386D8000, 0x386DA000,
0x386DC000, 0x386DE000, 0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000,
0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000, 0x386F0000, 0x386F2000,
0x386F4000, 0x386F6000, 0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000,
0x38700000, 0x38702000, 0x38704000, 0x38706000, 0x38708000, 0x3870A000,
0x3870C000, 0x3870E000, 0x38710000, 0x38712000, 0x38714000, 0x38716000,
0x38718000, 0x3871A000, 0x3871C000, 0x3871E000, 0x38720000, 0x38722000,
0x38724000, 0x38726000, 0x38728000, 0x3872A000, 0x3872C000, 0x3872E000,
0x38730000, 0x38732000, 0x38734000, 0x38736000, 0x38738000, 0x3873A000,
0x3873C000, 0x3873E000, 0x38740000, 0x38742000, 0x38744000, 0x38746000,
0x38748000, 0x3874A000, 0x3874C000, 0x3874E000, 0x38750000, 0x38752000,
0x38754000, 0x38756000, 0x38758000, 0x3875A000, 0x3875C000, 0x3875E000,
0x38760000, 0x38762000, 0x38764000, 0x38766000, 0x38768000, 0x3876A000,
0x3876C000, 0x3876E000, 0x38770000, 0x38772000, 0x38774000, 0x38776000,
0x38778000, 0x3877A000, 0x3877C000, 0x3877E000, 0x38780000, 0x38782000,
0x38784000, 0x38786000, 0x38788000, 0x3878A000, 0x3878C000, 0x3878E000,
0x38790000, 0x38792000, 0x38794000, 0x38796000, 0x38798000, 0x3879A000,
0x3879C000, 0x3879E000, 0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000,
0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000, 0x387B0000, 0x387B2000,
0x387B4000, 0x387B6000, 0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000,
0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000, 0x387C8000, 0x387CA000,
0x387CC000, 0x387CE000, 0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000,
0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000, 0x387E0000, 0x387E2000,
0x387E4000, 0x387E6000, 0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000,
0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000, 0x387F8000, 0x387FA000,
0x387FC000, 0x387FE000};
static const bits<float>::type exponent_table[64] = {
0x00000000, 0x00800000, 0x01000000, 0x01800000, 0x02000000, 0x02800000,
0x03000000, 0x03800000, 0x04000000, 0x04800000, 0x05000000, 0x05800000,
0x06000000, 0x06800000, 0x07000000, 0x07800000, 0x08000000, 0x08800000,
0x09000000, 0x09800000, 0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000,
0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000, 0x0E000000, 0x0E800000,
0x0F000000, 0x47800000, 0x80000000, 0x80800000, 0x81000000, 0x81800000,
0x82000000, 0x82800000, 0x83000000, 0x83800000, 0x84000000, 0x84800000,
0x85000000, 0x85800000, 0x86000000, 0x86800000, 0x87000000, 0x87800000,
0x88000000, 0x88800000, 0x89000000, 0x89800000, 0x8A000000, 0x8A800000,
0x8B000000, 0x8B800000, 0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000,
0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000};
static const unsigned short offset_table[64] = {
0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 0,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024};
bits<float>::type fbits =
mantissa_table[offset_table[value >> 10] + (value & 0x3FF)] +
exponent_table[value >> 10];
#endif
float out;
std::memcpy(&out, &fbits, sizeof(float));
return out;
#endif
}
/// Convert half-precision to IEEE double-precision.
/// \param value half-precision value to convert
/// \return double-precision value
inline double half2float_impl(unsigned int value, double, true_type) {
#if HALF_ENABLE_F16C_INTRINSICS
return _mm_cvtsd_f64(_mm_cvtps_pd(_mm_cvtph_ps(_mm_cvtsi32_si128(value))));
#else
uint32 hi = static_cast<uint32>(value & 0x8000) << 16;
unsigned int abs = value & 0x7FFF;
if (abs) {
hi |= 0x3F000000 << static_cast<unsigned>(abs >= 0x7C00);
for (; abs < 0x400; abs <<= 1, hi -= 0x100000)
;
hi += static_cast<uint32>(abs) << 10;
}
bits<double>::type dbits = static_cast<bits<double>::type>(hi) << 32;
double out;
std::memcpy(&out, &dbits, sizeof(double));
return out;
#endif
}
/// Convert half-precision to non-IEEE floating-point.
/// \tparam T type to convert to (builtin integer type)
/// \param value half-precision value to convert
/// \return floating-point value
template <typename T>
T half2float_impl(unsigned int value, T, ...) {
T out;
unsigned int abs = value & 0x7FFF;
if (abs > 0x7C00)
out = (std::numeric_limits<T>::has_signaling_NaN && !(abs & 0x200))
? std::numeric_limits<T>::signaling_NaN()
: std::numeric_limits<T>::has_quiet_NaN
? std::numeric_limits<T>::quiet_NaN()
: T();
else if (abs == 0x7C00)
out = std::numeric_limits<T>::has_infinity
? std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::max();
else if (abs > 0x3FF)
out = std::ldexp(static_cast<T>((abs & 0x3FF) | 0x400), (abs >> 10) - 25);
else
out = std::ldexp(static_cast<T>(abs), -24);
return (value & 0x8000) ? -out : out;
}
/// Convert half-precision to floating-point.
/// \tparam T type to convert to (builtin integer type)
/// \param value half-precision value to convert
/// \return floating-point value
template <typename T>
T half2float(unsigned int value) {
return half2float_impl(value, T(),
bool_type < std::numeric_limits<T>::is_iec559 &&
sizeof(typename bits<T>::type) == sizeof(T) > ());
}
/// Convert half-precision floating-point to integer.
/// \tparam R rounding mode to use
/// \tparam E `true` for round to even, `false` for round away from zero
/// \tparam I `true` to raise INEXACT exception (if inexact), `false` to never
/// raise it \tparam T type to convert to (buitlin integer type with at least 16
/// bits precision, excluding any implicit sign bits) \param value
/// half-precision value to convert \return rounded integer value \exception
/// FE_INVALID if value is not representable in type \a T \exception FE_INEXACT
/// if value had to be rounded and \a I is `true`
template <std::float_round_style R, bool E, bool I, typename T>
T half2int(unsigned int value) {
unsigned int abs = value & 0x7FFF;
if (abs >= 0x7C00) {
raise(FE_INVALID);
return (value & 0x8000) ? std::numeric_limits<T>::min()
: std::numeric_limits<T>::max();
}
if (abs < 0x3800) {
raise(FE_INEXACT, I);
return (R == std::round_toward_infinity)
? T(~(value >> 15) & (abs != 0))
: (R == std::round_toward_neg_infinity) ? -T(value > 0x8000)
: T();
}
int exp = 25 - (abs >> 10);
unsigned int m = (value & 0x3FF) | 0x400;
int32 i = static_cast<int32>(
(exp <= 0) ? (m << -exp)
: ((m + ((R == std::round_to_nearest)
? ((1 << (exp - 1)) - (~(m >> exp) & E))
: (R == std::round_toward_infinity)
? (((1 << exp) - 1) & ((value >> 15) - 1))
: (R == std::round_toward_neg_infinity)
? (((1 << exp) - 1) & -(value >> 15))
: 0)) >>
exp));
if ((!std::numeric_limits<T>::is_signed && (value & 0x8000)) ||
(std::numeric_limits<T>::digits < 16 &&
((value & 0x8000) ? (-i < std::numeric_limits<T>::min())
: (i > std::numeric_limits<T>::max()))))
raise(FE_INVALID);
else if (I && exp > 0 && (m & ((1 << exp) - 1)))
raise(FE_INEXACT);
return static_cast<T>((value & 0x8000) ? -i : i);
}
/// \}
/// \name Mathematics
/// \{
/// upper part of 64-bit multiplication.
/// \tparam R rounding mode to use
/// \param x first factor
/// \param y second factor
/// \return upper 32 bit of \a x * \a y
template <std::float_round_style R>
uint32 mulhi(uint32 x, uint32 y) {
uint32 xy = (x >> 16) * (y & 0xFFFF), yx = (x & 0xFFFF) * (y >> 16),
c = (xy & 0xFFFF) + (yx & 0xFFFF) +
(((x & 0xFFFF) * (y & 0xFFFF)) >> 16);
return (x >> 16) * (y >> 16) + (xy >> 16) + (yx >> 16) + (c >> 16) +
((R == std::round_to_nearest)
? ((c >> 15) & 1)
: (R == std::round_toward_infinity) ? ((c & 0xFFFF) != 0) : 0);
}
/// 64-bit multiplication.
/// \param x first factor
/// \param y second factor
/// \return upper 32 bit of \a x * \a y rounded to nearest
inline uint32 multiply64(uint32 x, uint32 y) {
#if HALF_ENABLE_CPP11_LONG_LONG
return static_cast<uint32>(
(static_cast<unsigned long long>(x) * static_cast<unsigned long long>(y) +
0x80000000) >>
32);
#else
return mulhi<std::round_to_nearest>(x, y);
#endif
}
/// 64-bit division.
/// \param x upper 32 bit of dividend
/// \param y divisor
/// \param s variable to store sticky bit for rounding
/// \return (\a x << 32) / \a y
inline uint32 divide64(uint32 x, uint32 y, int &s) {
#if HALF_ENABLE_CPP11_LONG_LONG
unsigned long long xx = static_cast<unsigned long long>(x) << 32;
return s = (xx % y != 0), static_cast<uint32>(xx / y);
#else
y >>= 1;
uint32 rem = x, div = 0;
for (unsigned int i = 0; i < 32; ++i) {
div <<= 1;
if (rem >= y) {
rem -= y;
div |= 1;
}
rem <<= 1;
}
return s = rem > 1, div;
#endif
}
/// Half precision positive modulus.
/// \tparam Q `true` to compute full quotient, `false` else
/// \tparam R `true` to compute signed remainder, `false` for positive remainder
/// \param x first operand as positive finite half-precision value
/// \param y second operand as positive finite half-precision value
/// \param quo adress to store quotient at, `nullptr` if \a Q `false`
/// \return modulus of \a x / \a y
template <bool Q, bool R>
unsigned int mod(unsigned int x, unsigned int y, int *quo = NULL) {
unsigned int q = 0;
if (x > y) {
int absx = x, absy = y, expx = 0, expy = 0;
for (; absx < 0x400; absx <<= 1, --expx)
;
for (; absy < 0x400; absy <<= 1, --expy)
;
expx += absx >> 10;
expy += absy >> 10;
int mx = (absx & 0x3FF) | 0x400, my = (absy & 0x3FF) | 0x400;
for (int d = expx - expy; d; --d) {
if (!Q && mx == my) return 0;
if (mx >= my) {
mx -= my;
q += Q;
}
mx <<= 1;
q <<= static_cast<int>(Q);
}
if (!Q && mx == my) return 0;
if (mx >= my) {
mx -= my;
++q;
}
if (Q) {
q &= (1 << (std::numeric_limits<int>::digits - 1)) - 1;
if (!mx) return *quo = q, 0;
}
for (; mx < 0x400; mx <<= 1, --expy)
;
x = (expy > 0) ? ((expy << 10) | (mx & 0x3FF)) : (mx >> (1 - expy));
}
if (R) {
unsigned int a, b;
if (y < 0x800) {
a = (x < 0x400) ? (x << 1) : (x + 0x400);
b = y;
} else {
a = x;
b = y - 0x400;
}
if (a > b || (a == b && (q & 1))) {
int exp = (y >> 10) + (y <= 0x3FF), d = exp - (x >> 10) - (x <= 0x3FF);
int m = (((y & 0x3FF) | ((y > 0x3FF) << 10)) << 1) -
(((x & 0x3FF) | ((x > 0x3FF) << 10)) << (1 - d));
for (; m < 0x800 && exp > 1; m <<= 1, --exp)
;
x = 0x8000 + ((exp - 1) << 10) + (m >> 1);
q += Q;
}
}
if (Q) *quo = q;
return x;
}
/// Fixed point square root.
/// \tparam F number of fractional bits
/// \param r radicand in Q1.F fixed point format
/// \param exp exponent
/// \return square root as Q1.F/2
template <unsigned int F>
uint32 sqrt(uint32 &r, int &exp) {
int i = exp & 1;
r <<= i;
exp = (exp - i) / 2;
uint32 m = 0;
for (uint32 bit = static_cast<uint32>(1) << F; bit; bit >>= 2) {
if (r < m + bit)
m >>= 1;
else {
r -= m + bit;
m = (m >> 1) + bit;
}
}
return m;
}
/// Fixed point binary exponential.
/// This uses the BKM algorithm in E-mode.
/// \param m exponent in [0,1) as Q0.31
/// \param n number of iterations (at most 32)
/// \return 2 ^ \a m as Q1.31
inline uint32 exp2(uint32 m, unsigned int n = 32) {
static const uint32 logs[] = {
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD,
0x02DCF2D1, 0x016FE50B, 0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6,
0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153, 0x0000B8AA, 0x00005C55,
0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006,
0x00000003, 0x00000001};
if (!m) return 0x80000000;
uint32 mx = 0x80000000, my = 0;
for (unsigned int i = 1; i < n; ++i) {
uint32 mz = my + logs[i];
if (mz <= m) {
my = mz;
mx += mx >> i;
}
}
return mx;
}
/// Fixed point binary logarithm.
/// This uses the BKM algorithm in L-mode.
/// \param m mantissa in [1,2) as Q1.30
/// \param n number of iterations (at most 32)
/// \return log2(\a m) as Q0.31
inline uint32 log2(uint32 m, unsigned int n = 32) {
static const uint32 logs[] = {
0x80000000, 0x4AE00D1D, 0x2934F098, 0x15C01A3A, 0x0B31FB7D, 0x05AEB4DD,
0x02DCF2D1, 0x016FE50B, 0x00B84E23, 0x005C3E10, 0x002E24CA, 0x001713D6,
0x000B8A47, 0x0005C53B, 0x0002E2A3, 0x00017153, 0x0000B8AA, 0x00005C55,
0x00002E2B, 0x00001715, 0x00000B8B, 0x000005C5, 0x000002E3, 0x00000171,
0x000000B9, 0x0000005C, 0x0000002E, 0x00000017, 0x0000000C, 0x00000006,
0x00000003, 0x00000001};
if (m == 0x40000000) return 0;
uint32 mx = 0x40000000, my = 0;
for (unsigned int i = 1; i < n; ++i) {
uint32 mz = mx + (mx >> i);
if (mz <= m) {
mx = mz;
my += logs[i];
}
}
return my;
}
/// Fixed point sine and cosine.
/// This uses the CORDIC algorithm in rotation mode.
/// \param mz angle in [-pi/2,pi/2] as Q1.30
/// \param n number of iterations (at most 31)
/// \return sine and cosine of \a mz as Q1.30
inline std::pair<uint32, uint32> sincos(uint32 mz, unsigned int n = 31) {
static const uint32 angles[] = {
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C,
0x00FFFAAB, 0x007FFF55, 0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000,
0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000,
0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002,
0x00000001};
uint32 mx = 0x26DD3B6A, my = 0;
for (unsigned int i = 0; i < n; ++i) {
uint32 sign = sign_mask(mz);
uint32 tx = mx - (arithmetic_shift(my, i) ^ sign) + sign;
uint32 ty = my + (arithmetic_shift(mx, i) ^ sign) - sign;
mx = tx;
my = ty;
mz -= (angles[i] ^ sign) - sign;
}
return std::make_pair(my, mx);
}
/// Fixed point arc tangent.
/// This uses the CORDIC algorithm in vectoring mode.
/// \param my y coordinate as Q0.30
/// \param mx x coordinate as Q0.30
/// \param n number of iterations (at most 31)
/// \return arc tangent of \a my / \a mx as Q1.30
inline uint32 atan2(uint32 my, uint32 mx, unsigned int n = 31) {
static const uint32 angles[] = {
0x3243F6A9, 0x1DAC6705, 0x0FADBAFD, 0x07F56EA7, 0x03FEAB77, 0x01FFD55C,
0x00FFFAAB, 0x007FFF55, 0x003FFFEB, 0x001FFFFD, 0x00100000, 0x00080000,
0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000,
0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080,
0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002,
0x00000001};
uint32 mz = 0;
for (unsigned int i = 0; i < n; ++i) {
uint32 sign = sign_mask(my);
uint32 tx = mx + (arithmetic_shift(my, i) ^ sign) - sign;
uint32 ty = my - (arithmetic_shift(mx, i) ^ sign) + sign;
mx = tx;
my = ty;
mz += (angles[i] ^ sign) - sign;
}
return mz;
}
/// Reduce argument for trigonometric functions.
/// \param abs half-precision floating-point value
/// \param k value to take quarter period
/// \return \a abs reduced to [-pi/4,pi/4] as Q0.30
inline uint32 angle_arg(unsigned int abs, int &k) {
uint32 m = (abs & 0x3FF) | ((abs > 0x3FF) << 10);
int exp = (abs >> 10) + (abs <= 0x3FF) - 15;
if (abs < 0x3A48) return k = 0, m << (exp + 20);
#if HALF_ENABLE_CPP11_LONG_LONG
unsigned long long y = m * 0xA2F9836E4E442, mask = (1ULL << (62 - exp)) - 1,
yi = (y + (mask >> 1)) & ~mask, f = y - yi;
uint32 sign = -static_cast<uint32>(f >> 63);
k = static_cast<int>(yi >> (62 - exp));
return (multiply64(static_cast<uint32>((sign ? -f : f) >> (31 - exp)),
0xC90FDAA2) ^
sign) -
sign;
#else
uint32 yh = m * 0xA2F98 + mulhi<std::round_toward_zero>(m, 0x36E4E442),
yl = (m * 0x36E4E442) & 0xFFFFFFFF;
uint32 mask = (static_cast<uint32>(1) << (30 - exp)) - 1,
yi = (yh + (mask >> 1)) & ~mask, sign = -static_cast<uint32>(yi > yh);
k = static_cast<int>(yi >> (30 - exp));
uint32 fh = (yh ^ sign) + (yi ^ ~sign) - ~sign, fl = (yl ^ sign) - sign;
return (multiply64((exp > -1) ? (((fh << (1 + exp)) & 0xFFFFFFFF) |
((fl & 0xFFFFFFFF) >> (31 - exp)))
: fh,
0xC90FDAA2) ^
sign) -
sign;
#endif
}
/// Get arguments for atan2 function.
/// \param abs half-precision floating-point value
/// \return \a abs and sqrt(1 - \a abs^2) as Q0.30
inline std::pair<uint32, uint32> atan2_args(unsigned int abs) {
int exp = -15;
for (; abs < 0x400; abs <<= 1, --exp)
;
exp += abs >> 10;
uint32 my = ((abs & 0x3FF) | 0x400) << 5, r = my * my;
int rexp = 2 * exp;
r = 0x40000000 - ((rexp > -31)
? ((r >> -rexp) |
((r & ((static_cast<uint32>(1) << -rexp) - 1)) != 0))
: 1);
for (rexp = 0; r < 0x40000000; r <<= 1, --rexp)
;
uint32 mx = sqrt<30>(r, rexp);
int d = exp - rexp;
if (d < 0)
return std::make_pair((d < -14)
? ((my >> (-d - 14)) + ((my >> (-d - 15)) & 1))
: (my << (14 + d)),
(mx << 14) + (r << 13) / mx);
if (d > 0)
return std::make_pair(
my << 14,
(d > 14)
? ((mx >> (d - 14)) + ((mx >> (d - 15)) & 1))
: ((d == 14) ? mx : ((mx << (14 - d)) + (r << (13 - d)) / mx)));
return std::make_pair(my << 13, (mx << 13) + (r << 12) / mx);
}
/// Get exponentials for hyperbolic computation
/// \param abs half-precision floating-point value
/// \param exp variable to take unbiased exponent of larger result
/// \param n number of BKM iterations (at most 32)
/// \return exp(abs) and exp(-\a abs) as Q1.31 with same exponent
inline std::pair<uint32, uint32> hyperbolic_args(unsigned int abs, int &exp,
unsigned int n = 32) {
uint32 mx = detail::multiply64(
static_cast<uint32>((abs & 0x3FF) + ((abs > 0x3FF) << 10)) << 21,
0xB8AA3B29),
my;
int e = (abs >> 10) + (abs <= 0x3FF);
if (e < 14) {
exp = 0;
mx >>= 14 - e;
} else {
exp = mx >> (45 - e);
mx = (mx << (e - 14)) & 0x7FFFFFFF;
}
mx = exp2(mx, n);
int d = exp << 1, s;
if (mx > 0x80000000) {
my = divide64(0x80000000, mx, s);
my |= s;
++d;
} else
my = mx;
return std::make_pair(
mx, (d < 31)
? ((my >> d) | ((my & ((static_cast<uint32>(1) << d) - 1)) != 0))
: 1);
}
/// Postprocessing for binary exponential.
/// \tparam R rounding mode to use
/// \param m fractional part of as Q0.31
/// \param exp absolute value of unbiased exponent
/// \param esign sign of actual exponent
/// \param sign sign bit of result
/// \param n number of BKM iterations (at most 32)
/// \return value converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded or \a I is `true`
template <std::float_round_style R>
unsigned int exp2_post(uint32 m, int exp, bool esign, unsigned int sign = 0,
unsigned int n = 32) {
if (esign) {
exp = -exp - (m != 0);
if (exp < -25)
return underflow<R>(sign);
else if (exp == -25)
return rounded<R, false>(sign, 1, m != 0);
} else if (exp > 15)
return overflow<R>(sign);
if (!m)
return sign |
(((exp += 15) > 0) ? (exp << 10) : check_underflow(0x200 >> -exp));
m = exp2(m, n);
int s = 0;
if (esign) m = divide64(0x80000000, m, s);
return fixed2half<R, 31, false, false, true>(m, exp + 14, sign, s);
}
/// Postprocessing for binary logarithm.
/// \tparam R rounding mode to use
/// \tparam L logarithm for base transformation as Q1.31
/// \param m fractional part of logarithm as Q0.31
/// \param ilog signed integer part of logarithm
/// \param exp biased exponent of result
/// \param sign sign bit of result
/// \return value base-transformed and converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template <std::float_round_style R, uint32 L>
unsigned int log2_post(uint32 m, int ilog, int exp, unsigned int sign = 0) {
uint32 msign = sign_mask(ilog);
m = (((static_cast<uint32>(ilog) << 27) + (m >> 4)) ^ msign) - msign;
if (!m) return 0;
for (; m < 0x80000000; m <<= 1, --exp)
;
int i = m >= L, s;
exp += i;
m >>= 1 + i;
sign ^= msign & 0x8000;
if (exp < -11) return underflow<R>(sign);
m = divide64(m, L, s);
return fixed2half<R, 30, false, false, true>(m, exp, sign, 1);
}
/// Hypotenuse square root and postprocessing.
/// \tparam R rounding mode to use
/// \param r mantissa as Q2.30
/// \param exp biased exponent
/// \return square root converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if value had to be rounded
template <std::float_round_style R>
unsigned int hypot_post(uint32 r, int exp) {
int i = r >> 31;
if ((exp += i) > 46) return overflow<R>();
if (exp < -34) return underflow<R>();
r = (r >> i) | (r & i);
uint32 m = sqrt<30>(r, exp += 15);
return fixed2half<R, 15, false, false, false>(m, exp - 1, 0, r != 0);
}
/// Division and postprocessing for tangents.
/// \tparam R rounding mode to use
/// \param my dividend as Q1.31
/// \param mx divisor as Q1.31
/// \param exp biased exponent of result
/// \param sign sign bit of result
/// \return quotient converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template <std::float_round_style R>
unsigned int tangent_post(uint32 my, uint32 mx, int exp,
unsigned int sign = 0) {
int i = my >= mx, s;
exp += i;
if (exp > 29) return overflow<R>(sign);
if (exp < -11) return underflow<R>(sign);
uint32 m = divide64(my >> (i + 1), mx, s);
return fixed2half<R, 30, false, false, true>(m, exp, sign, s);
}
/// Area function and postprocessing.
/// This computes the value directly in Q2.30 using the representation
/// `asinh|acosh(x) = log(x+sqrt(x^2+|-1))`. \tparam R rounding mode to use
/// \tparam S `true` for asinh, `false` for acosh
/// \param arg half-precision argument
/// \return asinh|acosh(\a arg) converted to half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template <std::float_round_style R, bool S>
unsigned int area(unsigned int arg) {
int abs = arg & 0x7FFF, expx = (abs >> 10) + (abs <= 0x3FF) - 15, expy = -15,
ilog, i;
uint32 mx = static_cast<uint32>((abs & 0x3FF) | ((abs > 0x3FF) << 10)) << 20,
my, r;
for (; abs < 0x400; abs <<= 1, --expy)
;
expy += abs >> 10;
r = ((abs & 0x3FF) | 0x400) << 5;
r *= r;
i = r >> 31;
expy = 2 * expy + i;
r >>= i;
if (S) {
if (expy < 0) {
r = 0x40000000 +
((expy > -30) ? ((r >> -expy) |
((r & ((static_cast<uint32>(1) << -expy) - 1)) != 0))
: 1);
expy = 0;
} else {
r += 0x40000000 >> expy;
i = r >> 31;
r = (r >> i) | (r & i);
expy += i;
}
} else {
r -= 0x40000000 >> expy;
for (; r < 0x40000000; r <<= 1, --expy)
;
}
my = sqrt<30>(r, expy);
my = (my << 15) + (r << 14) / my;
if (S) {
mx >>= expy - expx;
ilog = expy;
} else {
my >>= expx - expy;
ilog = expx;
}
my += mx;
i = my >> 31;
static const int G = S && (R == std::round_to_nearest);
return log2_post<R, 0xB8AA3B2A>(log2(my >> i, 26 + S + G) + (G << 3),
ilog + i, 17,
arg & (static_cast<unsigned>(S) << 15));
}
/// Class for 1.31 unsigned floating-point computation
struct f31 {
/// Constructor.
/// \param mant mantissa as 1.31
/// \param e exponent
HALF_CONSTEXPR f31(uint32 mant, int e) : m(mant), exp(e) {}
/// Constructor.
/// \param abs unsigned half-precision value
f31(unsigned int abs) : exp(-15) {
for (; abs < 0x400; abs <<= 1, --exp)
;
m = static_cast<uint32>((abs & 0x3FF) | 0x400) << 21;
exp += (abs >> 10);
}
/// Addition operator.
/// \param a first operand
/// \param b second operand
/// \return \a a + \a b
friend f31 operator+(f31 a, f31 b) {
if (b.exp > a.exp) std::swap(a, b);
int d = a.exp - b.exp;
uint32 m = a.m + ((d < 32) ? (b.m >> d) : 0);
int i = (m & 0xFFFFFFFF) < a.m;
return f31(((m + i) >> i) | 0x80000000, a.exp + i);
}
/// Subtraction operator.
/// \param a first operand
/// \param b second operand
/// \return \a a - \a b
friend f31 operator-(f31 a, f31 b) {
int d = a.exp - b.exp, exp = a.exp;
uint32 m = a.m - ((d < 32) ? (b.m >> d) : 0);
if (!m) return f31(0, -32);
for (; m < 0x80000000; m <<= 1, --exp)
;
return f31(m, exp);
}
/// Multiplication operator.
/// \param a first operand
/// \param b second operand
/// \return \a a * \a b
friend f31 operator*(f31 a, f31 b) {
uint32 m = multiply64(a.m, b.m);
int i = m >> 31;
return f31(m << (1 - i), a.exp + b.exp + i);
}
/// Division operator.
/// \param a first operand
/// \param b second operand
/// \return \a a / \a b
friend f31 operator/(f31 a, f31 b) {
int i = a.m >= b.m, s;
uint32 m = divide64((a.m + i) >> i, b.m, s);
return f31(m, a.exp - b.exp + i - 1);
}
uint32 m; ///< mantissa as 1.31.
int exp; ///< exponent.
};
/// Error function and postprocessing.
/// This computes the value directly in Q1.31 using the approximations given
/// [here](https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions).
/// \tparam R rounding mode to use
/// \tparam C `true` for comlementary error function, `false` else
/// \param arg half-precision function argument
/// \return approximated value of error function in half-precision
/// \exception FE_OVERFLOW on overflows
/// \exception FE_UNDERFLOW on underflows
/// \exception FE_INEXACT if no other exception occurred
template <std::float_round_style R, bool C>
unsigned int erf(unsigned int arg) {
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
f31 x(abs),
x2 = x * x * f31(0xB8AA3B29, 0),
t = f31(0x80000000, 0) / (f31(0x80000000, 0) + f31(0xA7BA054A, -2) * x),
t2 = t * t;
f31 e =
((f31(0x87DC2213, 0) * t2 + f31(0xB5F0E2AE, 0)) * t2 +
f31(0x82790637, -2) -
(f31(0xBA00E2B8, 0) * t2 + f31(0x91A98E62, -2)) * t) *
t /
((x2.exp < 0) ? f31(exp2((x2.exp > -32) ? (x2.m >> -x2.exp) : 0, 30), 0)
: f31(exp2((x2.m << x2.exp) & 0x7FFFFFFF, 22),
x2.m >> (31 - x2.exp)));
return (!C || sign)
? fixed2half<R, 31, false, true, true>(
0x80000000 - (e.m >> (C - e.exp)), 14 + C, sign & (C - 1U))
: (e.exp < -25) ? underflow<R>()
: fixed2half<R, 30, false, false, true>(
e.m >> 1, e.exp + 14, 0, e.m & 1);
}
/// Gamma function and postprocessing.
/// This approximates the value of either the gamma function or its logarithm
/// directly in Q1.31. \tparam R rounding mode to use \tparam L `true` for
/// lograithm of gamma function, `false` for gamma function \param arg
/// half-precision floating-point value \return lgamma/tgamma(\a arg) in
/// half-precision \exception FE_OVERFLOW on overflows \exception FE_UNDERFLOW
/// on underflows \exception FE_INEXACT if \a arg is not a positive integer
template <std::float_round_style R, bool L>
unsigned int gamma(unsigned int arg) {
/* static const double p[] ={ 2.50662827563479526904,
225.525584619175212544, -268.295973841304927459, 80.9030806934622512966,
-5.00757863970517583837, 0.0114684895434781459556 }; double t = arg + 4.65,
s = p[0]; for(unsigned int i=0; i<5; ++i) s += p[i+1] / (arg+i); return
std::log(s) + (arg-0.5)*std::log(t) - t;
*/
static const f31 pi(0xC90FDAA2, 1), lbe(0xB8AA3B29, 0);
unsigned int abs = arg & 0x7FFF, sign = arg & 0x8000;
bool bsign = sign != 0;
f31 z(abs),
x = sign ? (z + f31(0x80000000, 0)) : z, t = x + f31(0x94CCCCCD, 2),
s = f31(0xA06C9901, 1) + f31(0xBBE654E2, -7) / (x + f31(0x80000000, 2)) +
f31(0xA1CE6098, 6) / (x + f31(0x80000000, 1)) +
f31(0xE1868CB7, 7) / x -
f31(0x8625E279, 8) / (x + f31(0x80000000, 0)) -
f31(0xA03E158F, 2) / (x + f31(0xC0000000, 1));
int i = (s.exp >= 2) + (s.exp >= 4) + (s.exp >= 8) + (s.exp >= 16);
s = f31((static_cast<uint32>(s.exp) << (31 - i)) + (log2(s.m >> 1, 28) >> i),
i) /
lbe;
if (x.exp != -1 || x.m != 0x80000000) {
i = (t.exp >= 2) + (t.exp >= 4) + (t.exp >= 8);
f31 l = f31((static_cast<uint32>(t.exp) << (31 - i)) +
(log2(t.m >> 1, 30) >> i),
i) /
lbe;
s = (x.exp < -1) ? (s - (f31(0x80000000, -1) - x) * l)
: (s + (x - f31(0x80000000, -1)) * l);
}
s = x.exp ? (s - t) : (t - s);
if (bsign) {
if (z.exp >= 0) {
sign &= (L | ((z.m >> (31 - z.exp)) & 1)) - 1;
for (z = f31((z.m << (1 + z.exp)) & 0xFFFFFFFF, -1); z.m < 0x80000000;
z.m <<= 1, --z.exp)
;
}
if (z.exp == -1) z = f31(0x80000000, 0) - z;
if (z.exp < -1) {
z = z * pi;
z.m = sincos(z.m >> (1 - z.exp), 30).first;
for (z.exp = 1; z.m < 0x80000000; z.m <<= 1, --z.exp)
;
} else
z = f31(0x80000000, 0);
}
if (L) {
if (bsign) {
f31 l(0x92868247, 0);
if (z.exp < 0) {
uint32 m = log2((z.m + 1) >> 1, 27);
z = f31(-((static_cast<uint32>(z.exp) << 26) + (m >> 5)), 5);
for (; z.m < 0x80000000; z.m <<= 1, --z.exp)
;
l = l + z / lbe;
}
sign = static_cast<unsigned>(
x.exp && (l.exp < s.exp || (l.exp == s.exp && l.m < s.m)))
<< 15;
s = sign ? (s - l) : x.exp ? (l - s) : (l + s);
} else {
sign = static_cast<unsigned>(x.exp == 0) << 15;
if (s.exp < -24) return underflow<R>(sign);
if (s.exp > 15) return overflow<R>(sign);
}
} else {
s = s * lbe;
uint32 m;
if (s.exp < 0) {
m = s.m >> -s.exp;
s.exp = 0;
} else {
m = (s.m << s.exp) & 0x7FFFFFFF;
s.exp = (s.m >> (31 - s.exp));
}
s.m = exp2(m, 27);
if (!x.exp) s = f31(0x80000000, 0) / s;
if (bsign) {
if (z.exp < 0) s = s * z;
s = pi / s;
if (s.exp < -24) return underflow<R>(sign);
} else if (z.exp > 0 && !(z.m & ((1 << (31 - z.exp)) - 1)))
return ((s.exp + 14) << 10) + (s.m >> 21);
if (s.exp > 15) return overflow<R>(sign);
}
return fixed2half<R, 31, false, false, true>(s.m, s.exp + 14, sign);
}
/// \}
template <typename, typename, std::float_round_style>
struct half_caster;
} // namespace detail
/// Half-precision floating-point type.
/// This class implements an IEEE-conformant half-precision floating-point type
/// with the usual arithmetic operators and conversions. It is implicitly
/// convertible to single-precision floating-point, which makes artihmetic
/// expressions and functions with mixed-type operands to be of the most precise
/// operand type.
///
/// According to the C++98/03 definition, the half type is not a POD type. But
/// according to C++11's less strict and extended definitions it is both a
/// standard layout type and a trivially copyable type (even if not a POD type),
/// which means it can be standard-conformantly copied using raw binary copies.
/// But in this context some more words about the actual size of the type.
/// Although the half is representing an IEEE 16-bit type, it does not
/// neccessarily have to be of exactly 16-bits size. But on any reasonable
/// implementation the actual binary representation of this type will most
/// probably not ivolve any additional "magic" or padding beyond the simple
/// binary representation of the underlying 16-bit IEEE number, even if not
/// strictly guaranteed by the standard. But even then it only has an actual
/// size of 16 bits if your C++ implementation supports an unsigned integer type
/// of exactly 16 bits width. But this should be the case on nearly any
/// reasonable platform.
///
/// So if your C++ implementation is not totally exotic or imposes special
/// alignment requirements, it is a reasonable assumption that the data of a
/// half is just comprised of the 2 bytes of the underlying IEEE representation.
class half {
public:
/// \name Construction and assignment
/// \{
/// Default constructor.
/// This initializes the half to 0. Although this does not match the builtin
/// types' default-initialization semantics and may be less efficient than no
/// initialization, it is needed to provide proper value-initialization
/// semantics.
HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}
/// Conversion constructor.
/// \param rhs float to convert
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
explicit half(float rhs)
: data_(
static_cast<detail::uint16>(detail::float2half<round_style>(rhs))) {
}
/// Conversion to single-precision.
/// \return single precision value representing expression value
operator float() const { return detail::half2float<float>(data_); }
/// Assignment operator.
/// \param rhs single-precision value to copy from
/// \return reference to this half
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
half &operator=(float rhs) {
data_ = static_cast<detail::uint16>(detail::float2half<round_style>(rhs));
return *this;
}
/// \}
/// \name Arithmetic updates
/// \{
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to add
/// \return reference to this half
/// \exception FE_... according to operator+(half,half)
half &operator+=(half rhs) { return *this = *this + rhs; }
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to subtract
/// \return reference to this half
/// \exception FE_... according to operator-(half,half)
half &operator-=(half rhs) { return *this = *this - rhs; }
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to multiply with
/// \return reference to this half
/// \exception FE_... according to operator*(half,half)
half &operator*=(half rhs) { return *this = *this * rhs; }
/// Arithmetic assignment.
/// \tparam T type of concrete half expression
/// \param rhs half expression to divide by
/// \return reference to this half
/// \exception FE_... according to operator/(half,half)
half &operator/=(half rhs) { return *this = *this / rhs; }
/// Arithmetic assignment.
/// \param rhs single-precision value to add
/// \return reference to this half
/// \exception FE_... according to operator=()
half &operator+=(float rhs) { return *this = *this + rhs; }
/// Arithmetic assignment.
/// \param rhs single-precision value to subtract
/// \return reference to this half
/// \exception FE_... according to operator=()
half &operator-=(float rhs) { return *this = *this - rhs; }
/// Arithmetic assignment.
/// \param rhs single-precision value to multiply with
/// \return reference to this half
/// \exception FE_... according to operator=()
half &operator*=(float rhs) { return *this = *this * rhs; }
/// Arithmetic assignment.
/// \param rhs single-precision value to divide by
/// \return reference to this half
/// \exception FE_... according to operator=()
half &operator/=(float rhs) { return *this = *this / rhs; }
/// \}
/// \name Increment and decrement
/// \{
/// Prefix increment.
/// \return incremented half value
/// \exception FE_... according to operator+(half,half)
half &operator++() { return *this = *this + half(detail::binary, 0x3C00); }
/// Prefix decrement.
/// \return decremented half value
/// \exception FE_... according to operator-(half,half)
half &operator--() { return *this = *this + half(detail::binary, 0xBC00); }
/// Postfix increment.
/// \return non-incremented half value
/// \exception FE_... according to operator+(half,half)
half operator++(int) {
half out(*this);
++*this;
return out;
}
/// Postfix decrement.
/// \return non-decremented half value
/// \exception FE_... according to operator-(half,half)
half operator--(int) {
half out(*this);
--*this;
return out;
}
/// \}
private:
/// Rounding mode to use
static const std::float_round_style round_style =
(std::float_round_style)(HALF_ROUND_STYLE);
/// Constructor.
/// \param bits binary representation to set half to
HALF_CONSTEXPR half(detail::binary_t, unsigned int bits) HALF_NOEXCEPT
: data_(static_cast<detail::uint16>(bits)) {}
/// Internal binary representation
detail::uint16 data_;
#ifndef HALF_DOXYGEN_ONLY
friend HALF_CONSTEXPR_NOERR bool operator==(half, half);
friend HALF_CONSTEXPR_NOERR bool operator!=(half, half);
friend HALF_CONSTEXPR_NOERR bool operator<(half, half);
friend HALF_CONSTEXPR_NOERR bool operator>(half, half);
friend HALF_CONSTEXPR_NOERR bool operator<=(half, half);
friend HALF_CONSTEXPR_NOERR bool operator>=(half, half);
friend HALF_CONSTEXPR half operator-(half);
friend half operator+(half, half);
friend half operator-(half, half);
friend half operator*(half, half);
friend half operator/(half, half);
template <typename charT, typename traits>
friend std::basic_ostream<charT, traits> &operator<<(
std::basic_ostream<charT, traits> &, half);
template <typename charT, typename traits>
friend std::basic_istream<charT, traits> &operator>>(
std::basic_istream<charT, traits> &, half &);
friend HALF_CONSTEXPR half fabs(half);
friend half fmod(half, half);
friend half remainder(half, half);
friend half remquo(half, half, int *);
friend half fma(half, half, half);
friend HALF_CONSTEXPR_NOERR half fmax(half, half);
friend HALF_CONSTEXPR_NOERR half fmin(half, half);
friend half fdim(half, half);
friend half nanh(const char *);
friend half exp(half);
friend half exp2(half);
friend half expm1(half);
friend half log(half);
friend half log10(half);
friend half log2(half);
friend half log1p(half);
friend half sqrt(half);
friend half rsqrt(half);
friend half cbrt(half);
friend half hypot(half, half);
friend half hypot(half, half, half);
friend half pow(half, half);
friend void sincos(half, half *, half *);
friend half sin(half);
friend half cos(half);
friend half tan(half);
friend half asin(half);
friend half acos(half);
friend half atan(half);
friend half atan2(half, half);
friend half sinh(half);
friend half cosh(half);
friend half tanh(half);
friend half asinh(half);
friend half acosh(half);
friend half atanh(half);
friend half erf(half);
friend half erfc(half);
friend half lgamma(half);
friend half tgamma(half);
friend half ceil(half);
friend half floor(half);
friend half trunc(half);
friend half round(half);
friend long lround(half);
friend half rint(half);
friend long lrint(half);
friend half nearbyint(half);
#ifdef HALF_ENABLE_CPP11_LONG_LONG
friend long long llround(half);
friend long long llrint(half);
#endif
friend half frexp(half, int *);
friend half scalbln(half, long);
friend half modf(half, half *);
friend int ilogb(half);
friend half logb(half);
friend half nextafter(half, half);
friend half nexttoward(half, long double);
friend HALF_CONSTEXPR half copysign(half, half);
friend HALF_CONSTEXPR int fpclassify(half);
friend HALF_CONSTEXPR bool isfinite(half);
friend HALF_CONSTEXPR bool isinf(half);
friend HALF_CONSTEXPR bool isnan(half);
friend HALF_CONSTEXPR bool isnormal(half);
friend HALF_CONSTEXPR bool signbit(half);
friend HALF_CONSTEXPR bool isgreater(half, half);
friend HALF_CONSTEXPR bool isgreaterequal(half, half);
friend HALF_CONSTEXPR bool isless(half, half);
friend HALF_CONSTEXPR bool islessequal(half, half);
friend HALF_CONSTEXPR bool islessgreater(half, half);
template <typename, typename, std::float_round_style>
friend struct detail::half_caster;
friend class std::numeric_limits<half>;
#if HALF_ENABLE_CPP11_HASH
friend struct std::hash<half>;
#endif
#if HALF_ENABLE_CPP11_USER_LITERALS
friend half literal::operator"" _h(long double);
#endif
#endif
};
#if HALF_ENABLE_CPP11_USER_LITERALS
namespace literal {
/// Half literal.
/// While this returns a properly rounded half-precision value, half literals
/// can unfortunately not be constant expressions due to rather involved
/// conversions. So don't expect this to be a literal literal without involving
/// conversion operations at runtime. It is a convenience feature, not a
/// performance optimization. \param value literal value \return half with of
/// given value (possibly rounded) \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half operator"" _h(long double value) {
return half(detail::binary, detail::float2half<half::round_style>(value));
}
} // namespace literal
#endif
namespace detail {
/// Helper class for half casts.
/// This class template has to be specialized for all valid cast arguments to
/// define an appropriate static `cast` member function and a corresponding
/// `type` member denoting its return type. \tparam T destination type \tparam U
/// source type \tparam R rounding mode to use
template <typename T, typename U,
std::float_round_style R = (std::float_round_style)(HALF_ROUND_STYLE)>
struct half_caster {};
template <typename U, std::float_round_style R>
struct half_caster<half, U, R> {
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
static_assert(std::is_arithmetic<U>::value,
"half_cast from non-arithmetic type unsupported");
#endif
static half cast(U arg) { return cast_impl(arg, is_float<U>()); };
private:
static half cast_impl(U arg, true_type) {
return half(binary, float2half<R>(arg));
}
static half cast_impl(U arg, false_type) {
return half(binary, int2half<R>(arg));
}
};
template <typename T, std::float_round_style R>
struct half_caster<T, half, R> {
#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
static_assert(std::is_arithmetic<T>::value,
"half_cast to non-arithmetic type unsupported");
#endif
static T cast(half arg) { return cast_impl(arg, is_float<T>()); }
private:
static T cast_impl(half arg, true_type) { return half2float<T>(arg.data_); }
static T cast_impl(half arg, false_type) {
return half2int<R, true, true, T>(arg.data_);
}
};
template <std::float_round_style R>
struct half_caster<half, half, R> {
static half cast(half arg) { return arg; }
};
} // namespace detail
} // namespace half_float
/// Extensions to the C++ standard library.
namespace std {
/// Numeric limits for half-precision floats.
/// **See also:** Documentation for
/// [std::numeric_limits](https://en.cppreference.com/w/cpp/types/numeric_limits)
template <>
class numeric_limits<half_float::half> {
public:
/// Is template specialization.
static HALF_CONSTEXPR_CONST bool is_specialized = true;
/// Supports signed values.
static HALF_CONSTEXPR_CONST bool is_signed = true;
/// Is not an integer type.
static HALF_CONSTEXPR_CONST bool is_integer = false;
/// Is not exact.
static HALF_CONSTEXPR_CONST bool is_exact = false;
/// Doesn't provide modulo arithmetic.
static HALF_CONSTEXPR_CONST bool is_modulo = false;
/// Has a finite set of values.
static HALF_CONSTEXPR_CONST bool is_bounded = true;
/// IEEE conformant.
static HALF_CONSTEXPR_CONST bool is_iec559 = true;
/// Supports infinity.
static HALF_CONSTEXPR_CONST bool has_infinity = true;
/// Supports quiet NaNs.
static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;
/// Supports signaling NaNs.
static HALF_CONSTEXPR_CONST bool has_signaling_NaN = true;
/// Supports subnormal values.
static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;
/// Supports no denormalization detection.
static HALF_CONSTEXPR_CONST bool has_denorm_loss = false;
#if HALF_ERRHANDLING_THROWS
static HALF_CONSTEXPR_CONST bool traps = true;
#else
/// Traps only if [HALF_ERRHANDLING_THROW_...](\ref
/// HALF_ERRHANDLING_THROW_INVALID) is acitvated.
static HALF_CONSTEXPR_CONST bool traps = false;
#endif
/// Does not support no pre-rounding underflow detection.
static HALF_CONSTEXPR_CONST bool tinyness_before = false;
/// Rounding mode.
static HALF_CONSTEXPR_CONST float_round_style round_style =
half_float::half::round_style;
/// Significant digits.
static HALF_CONSTEXPR_CONST int digits = 11;
/// Significant decimal digits.
static HALF_CONSTEXPR_CONST int digits10 = 3;
/// Required decimal digits to represent all possible values.
static HALF_CONSTEXPR_CONST int max_digits10 = 5;
/// Number base.
static HALF_CONSTEXPR_CONST int radix = 2;
/// One more than smallest exponent.
static HALF_CONSTEXPR_CONST int min_exponent = -13;
/// Smallest normalized representable power of 10.
static HALF_CONSTEXPR_CONST int min_exponent10 = -4;
/// One more than largest exponent
static HALF_CONSTEXPR_CONST int max_exponent = 16;
/// Largest finitely representable power of 10.
static HALF_CONSTEXPR_CONST int max_exponent10 = 4;
/// Smallest positive normal value.
static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0x0400);
}
/// Smallest finite value.
static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0xFBFF);
}
/// Largest finite value.
static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0x7BFF);
}
/// Difference between 1 and next representable value.
static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0x1400);
}
/// Maximum rounding error in ULP (units in the last place).
static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW {
return half_float::half(
half_float::detail::binary,
(round_style == std::round_to_nearest) ? 0x3800 : 0x3C00);
}
/// Positive infinity.
static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0x7C00);
}
/// Quiet NaN.
static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0x7FFF);
}
/// Signaling NaN.
static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0x7DFF);
}
/// Smallest positive subnormal value.
static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW {
return half_float::half(half_float::detail::binary, 0x0001);
}
};
#if HALF_ENABLE_CPP11_HASH
/// Hash function for half-precision floats.
/// This is only defined if C++11 `std::hash` is supported and enabled.
///
/// **See also:** Documentation for
/// [std::hash](https://en.cppreference.com/w/cpp/utility/hash)
template <>
struct hash<half_float::half> {
/// Type of function argument.
typedef half_float::half argument_type;
/// Function return type.
typedef size_t result_type;
/// Compute hash function.
/// \param arg half to hash
/// \return hash value
result_type operator()(argument_type arg) const {
return hash<half_float::detail::uint16>()(
arg.data_ & -static_cast<unsigned>(arg.data_ != 0x8000));
}
};
#endif
} // namespace std
namespace half_float {
/// \anchor compop
/// \name Comparison operators
/// \{
/// Comparison for equality.
/// \param x first operand
/// \param y second operand
/// \retval true if operands equal
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool operator==(half x, half y) {
return !detail::compsignal(x.data_, y.data_) &&
(x.data_ == y.data_ || !((x.data_ | y.data_) & 0x7FFF));
}
/// Comparison for inequality.
/// \param x first operand
/// \param y second operand
/// \retval true if operands not equal
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool operator!=(half x, half y) {
return detail::compsignal(x.data_, y.data_) ||
(x.data_ != y.data_ && ((x.data_ | y.data_) & 0x7FFF));
}
/// Comparison for less than.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x less than \a y
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool operator<(half x, half y) {
return !detail::compsignal(x.data_, y.data_) &&
((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) + (x.data_ >> 15)) <
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15));
}
/// Comparison for greater than.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater than \a y
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool operator>(half x, half y) {
return !detail::compsignal(x.data_, y.data_) &&
((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) + (x.data_ >> 15)) >
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15));
}
/// Comparison for less equal.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x less equal \a y
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool operator<=(half x, half y) {
return !detail::compsignal(x.data_, y.data_) &&
((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) +
(x.data_ >> 15)) <=
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15));
}
/// Comparison for greater equal.
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater equal \a y
/// \retval false else
/// \exception FE_INVALID if \a x or \a y is NaN
inline HALF_CONSTEXPR_NOERR bool operator>=(half x, half y) {
return !detail::compsignal(x.data_, y.data_) &&
((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) +
(x.data_ >> 15)) >=
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15));
}
/// \}
/// \anchor arithmetics
/// \name Arithmetic operators
/// \{
/// Identity.
/// \param arg operand
/// \return unchanged operand
inline HALF_CONSTEXPR half operator+(half arg) { return arg; }
/// Negation.
/// \param arg operand
/// \return negated operand
inline HALF_CONSTEXPR half operator-(half arg) {
return half(detail::binary, arg.data_ ^ 0x8000);
}
/// Addition.
/// This operation is exact to rounding for all rounding modes.
/// \param x left operand
/// \param y right operand
/// \return sum of half expressions
/// \exception FE_INVALID if \a x and \a y are infinities with different signs
/// or signaling NaNs \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according
/// to rounding
inline half operator+(half x, half y) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
detail::half2float<detail::internal_t>(x.data_) +
detail::half2float<detail::internal_t>(y.data_)));
#else
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF;
bool sub = ((x.data_ ^ y.data_) & 0x8000) != 0;
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary, (absx > 0x7C00 || absy > 0x7C00)
? detail::signal(x.data_, y.data_)
: (absy != 0x7C00) ? x.data_
: (sub && absx == 0x7C00)
? detail::invalid()
: y.data_);
if (!absx)
return absy ? y
: half(detail::binary,
(half::round_style == std::round_toward_neg_infinity)
? (x.data_ | y.data_)
: (x.data_ & y.data_));
if (!absy) return x;
unsigned int sign = ((sub && absy > absx) ? y.data_ : x.data_) & 0x8000;
if (absy > absx) std::swap(absx, absy);
int exp = (absx >> 10) + (absx <= 0x3FF),
d = exp - (absy >> 10) - (absy <= 0x3FF),
mx = ((absx & 0x3FF) | ((absx > 0x3FF) << 10)) << 3, my;
if (d < 13) {
my = ((absy & 0x3FF) | ((absy > 0x3FF) << 10)) << 3;
my = (my >> d) | ((my & ((1 << d) - 1)) != 0);
} else
my = 1;
if (sub) {
if (!(mx -= my))
return half(detail::binary,
static_cast<unsigned>(half::round_style ==
std::round_toward_neg_infinity)
<< 15);
for (; mx < 0x2000 && exp > 1; mx <<= 1, --exp)
;
} else {
mx += my;
int i = mx >> 14;
if ((exp += i) > 30)
return half(detail::binary, detail::overflow<half::round_style>(sign));
mx = (mx >> i) | (mx & i);
}
return half(detail::binary, detail::rounded<half::round_style, false>(
sign + ((exp - 1) << 10) + (mx >> 3),
(mx >> 2) & 1, (mx & 0x3) != 0));
#endif
}
/// Subtraction.
/// This operation is exact to rounding for all rounding modes.
/// \param x left operand
/// \param y right operand
/// \return difference of half expressions
/// \exception FE_INVALID if \a x and \a y are infinities with equal signs or
/// signaling NaNs \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to
/// rounding
inline half operator-(half x, half y) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
detail::half2float<detail::internal_t>(x.data_) -
detail::half2float<detail::internal_t>(y.data_)));
#else
return x + -y;
#endif
}
/// Multiplication.
/// This operation is exact to rounding for all rounding modes.
/// \param x left operand
/// \param y right operand
/// \return product of half expressions
/// \exception FE_INVALID if multiplying 0 with infinity or if \a x or \a y is
/// signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to
/// rounding
inline half operator*(half x, half y) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
detail::half2float<detail::internal_t>(x.data_) *
detail::half2float<detail::internal_t>(y.data_)));
#else
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -16;
unsigned int sign = (x.data_ ^ y.data_) & 0x8000;
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary,
(absx > 0x7C00 || absy > 0x7C00)
? detail::signal(x.data_, y.data_)
: ((absx == 0x7C00 && !absy) || (absy == 0x7C00 && !absx))
? detail::invalid()
: (sign | 0x7C00));
if (!absx || !absy) return half(detail::binary, sign);
for (; absx < 0x400; absx <<= 1, --exp)
;
for (; absy < 0x400; absy <<= 1, --exp)
;
detail::uint32 m = static_cast<detail::uint32>((absx & 0x3FF) | 0x400) *
static_cast<detail::uint32>((absy & 0x3FF) | 0x400);
int i = m >> 21, s = m & i;
exp += (absx >> 10) + (absy >> 10) + i;
if (exp > 29)
return half(detail::binary, detail::overflow<half::round_style>(sign));
else if (exp < -11)
return half(detail::binary, detail::underflow<half::round_style>(sign));
return half(detail::binary,
detail::fixed2half<half::round_style, 20, false, false, false>(
m >> i, exp, sign, s));
#endif
}
/// Division.
/// This operation is exact to rounding for all rounding modes.
/// \param x left operand
/// \param y right operand
/// \return quotient of half expressions
/// \exception FE_INVALID if dividing 0s or infinities with each other or if \a
/// x or \a y is signaling NaN \exception FE_DIVBYZERO if dividing finite value
/// by 0 \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half operator/(half x, half y) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
detail::half2float<detail::internal_t>(x.data_) /
detail::half2float<detail::internal_t>(y.data_)));
#else
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = 14;
unsigned int sign = (x.data_ ^ y.data_) & 0x8000;
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary,
(absx > 0x7C00 || absy > 0x7C00)
? detail::signal(x.data_, y.data_)
: (absx == absy)
? detail::invalid()
: (sign | ((absx == 0x7C00) ? 0x7C00 : 0)));
if (!absx) return half(detail::binary, absy ? sign : detail::invalid());
if (!absy) return half(detail::binary, detail::pole(sign));
for (; absx < 0x400; absx <<= 1, --exp)
;
for (; absy < 0x400; absy <<= 1, ++exp)
;
detail::uint32 mx = (absx & 0x3FF) | 0x400, my = (absy & 0x3FF) | 0x400;
int i = mx < my;
exp += (absx >> 10) - (absy >> 10) - i;
if (exp > 29)
return half(detail::binary, detail::overflow<half::round_style>(sign));
else if (exp < -11)
return half(detail::binary, detail::underflow<half::round_style>(sign));
mx <<= 12 + i;
my <<= 1;
return half(detail::binary,
detail::fixed2half<half::round_style, 11, false, false, false>(
mx / my, exp, sign, mx % my != 0));
#endif
}
/// \}
/// \anchor streaming
/// \name Input and output
/// \{
/// Output operator.
/// This uses the built-in functionality for streaming out floating-point
/// numbers.
/// \param out output stream to write into
/// \param arg half expression to write
/// \return reference to output stream
template <typename charT, typename traits>
std::basic_ostream<charT, traits> &operator<<(
std::basic_ostream<charT, traits> &out, half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return out << detail::half2float<detail::internal_t>(arg.data_);
#else
return out << detail::half2float<float>(arg.data_);
#endif
}
/// Input operator.
/// This uses the built-in functionality for streaming in floating-point
/// numbers, specifically double precision floating
/// point numbers (unless overridden with [HALF_ARITHMETIC_TYPE](\ref
/// HALF_ARITHMETIC_TYPE)). So the input string is first rounded to double
/// precision using the underlying platform's current floating-point rounding
/// mode before being rounded to half-precision using the library's
/// half-precision rounding mode. \param in input stream to read from \param arg
/// half to read into \return reference to input stream \exception FE_OVERFLOW,
/// ...UNDERFLOW, ...INEXACT according to rounding
template <typename charT, typename traits>
std::basic_istream<charT, traits> &operator>>(
std::basic_istream<charT, traits> &in, half &arg) {
#ifdef HALF_ARITHMETIC_TYPE
detail::internal_t f;
#else
double f;
#endif
if (in >> f) arg.data_ = detail::float2half<half::round_style>(f);
return in;
}
/// \}
/// \anchor basic
/// \name Basic mathematical operations
/// \{
/// Absolute value.
/// **See also:** Documentation for
/// [std::fabs](https://en.cppreference.com/w/cpp/numeric/math/fabs). \param arg
/// operand \return absolute value of \a arg
inline HALF_CONSTEXPR half fabs(half arg) {
return half(detail::binary, arg.data_ & 0x7FFF);
}
/// Absolute value.
/// **See also:** Documentation for
/// [std::abs](https://en.cppreference.com/w/cpp/numeric/math/fabs). \param arg
/// operand \return absolute value of \a arg
inline HALF_CONSTEXPR half abs(half arg) { return fabs(arg); }
/// Remainder of division.
/// **See also:** Documentation for
/// [std::fmod](https://en.cppreference.com/w/cpp/numeric/math/fmod). \param x
/// first operand \param y second operand \return remainder of floating-point
/// division. \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x
/// or \a y is signaling NaN
inline half fmod(half x, half y) {
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF,
sign = x.data_ & 0x8000;
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary,
(absx > 0x7C00 || absy > 0x7C00)
? detail::signal(x.data_, y.data_)
: (absx == 0x7C00) ? detail::invalid() : x.data_);
if (!absy) return half(detail::binary, detail::invalid());
if (!absx) return x;
if (absx == absy) return half(detail::binary, sign);
return half(detail::binary, sign | detail::mod<false, false>(absx, absy));
}
/// Remainder of division.
/// **See also:** Documentation for
/// [std::remainder](https://en.cppreference.com/w/cpp/numeric/math/remainder).
/// \param x first operand
/// \param y second operand
/// \return remainder of floating-point division.
/// \exception FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is
/// signaling NaN
inline half remainder(half x, half y) {
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF,
sign = x.data_ & 0x8000;
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary,
(absx > 0x7C00 || absy > 0x7C00)
? detail::signal(x.data_, y.data_)
: (absx == 0x7C00) ? detail::invalid() : x.data_);
if (!absy) return half(detail::binary, detail::invalid());
if (absx == absy) return half(detail::binary, sign);
return half(detail::binary, sign ^ detail::mod<false, true>(absx, absy));
}
/// Remainder of division.
/// **See also:** Documentation for
/// [std::remquo](https://en.cppreference.com/w/cpp/numeric/math/remquo). \param
/// x first operand \param y second operand \param quo address to store some
/// bits of quotient at \return remainder of floating-point division. \exception
/// FE_INVALID if \a x is infinite or \a y is 0 or if \a x or \a y is signaling
/// NaN
inline half remquo(half x, half y, int *quo) {
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF,
value = x.data_ & 0x8000;
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary, (absx > 0x7C00 || absy > 0x7C00)
? detail::signal(x.data_, y.data_)
: (absx == 0x7C00) ? detail::invalid()
: (*quo = 0, x.data_));
if (!absy) return half(detail::binary, detail::invalid());
bool qsign = ((value ^ y.data_) & 0x8000) != 0;
int q = 1;
if (absx != absy) value ^= detail::mod<true, true>(absx, absy, &q);
return *quo = qsign ? -q : q, half(detail::binary, value);
}
/// Fused multiply add.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::fma](https://en.cppreference.com/w/cpp/numeric/math/fma). \param x
/// first operand \param y second operand \param z third operand \return ( \a x
/// * \a y ) + \a z rounded as one operation. \exception FE_INVALID according to
/// operator*() and operator+() unless any argument is a quiet NaN and no
/// argument is a signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT
/// according to rounding the final addition
inline half fma(half x, half y, half z) {
#ifdef HALF_ARITHMETIC_TYPE
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_),
fy = detail::half2float<detail::internal_t>(y.data_),
fz = detail::half2float<detail::internal_t>(z.data_);
#if HALF_ENABLE_CPP11_CMATH && FP_FAST_FMA
return half(detail::binary,
detail::float2half<half::round_style>(std::fma(fx, fy, fz)));
#else
return half(detail::binary,
detail::float2half<half::round_style>(fx * fy + fz));
#endif
#else
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF,
exp = -15;
unsigned int sign = (x.data_ ^ y.data_) & 0x8000;
bool sub = ((sign ^ z.data_) & 0x8000) != 0;
if (absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
return (absx > 0x7C00 || absy > 0x7C00 || absz > 0x7C00)
? half(detail::binary, detail::signal(x.data_, y.data_, z.data_))
: (absx == 0x7C00)
? half(detail::binary, (!absy || (sub && absz == 0x7C00))
? detail::invalid()
: (sign | 0x7C00))
: (absy == 0x7C00)
? half(detail::binary,
(!absx || (sub && absz == 0x7C00))
? detail::invalid()
: (sign | 0x7C00))
: z;
if (!absx || !absy)
return absz ? z
: half(detail::binary,
(half::round_style == std::round_toward_neg_infinity)
? (z.data_ | sign)
: (z.data_ & sign));
for (; absx < 0x400; absx <<= 1, --exp)
;
for (; absy < 0x400; absy <<= 1, --exp)
;
detail::uint32 m = static_cast<detail::uint32>((absx & 0x3FF) | 0x400) *
static_cast<detail::uint32>((absy & 0x3FF) | 0x400);
int i = m >> 21;
exp += (absx >> 10) + (absy >> 10) + i;
m <<= 3 - i;
if (absz) {
int expz = 0;
for (; absz < 0x400; absz <<= 1, --expz)
;
expz += absz >> 10;
detail::uint32 mz = static_cast<detail::uint32>((absz & 0x3FF) | 0x400)
<< 13;
if (expz > exp || (expz == exp && mz > m)) {
std::swap(m, mz);
std::swap(exp, expz);
if (sub) sign = z.data_ & 0x8000;
}
int d = exp - expz;
mz = (d < 23) ? ((mz >> d) |
((mz & ((static_cast<detail::uint32>(1) << d) - 1)) != 0))
: 1;
if (sub) {
m = m - mz;
if (!m)
return half(detail::binary,
static_cast<unsigned>(half::round_style ==
std::round_toward_neg_infinity)
<< 15);
for (; m < 0x800000; m <<= 1, --exp)
;
} else {
m += mz;
i = m >> 24;
m = (m >> i) | (m & i);
exp += i;
}
}
if (exp > 30)
return half(detail::binary, detail::overflow<half::round_style>(sign));
else if (exp < -10)
return half(detail::binary, detail::underflow<half::round_style>(sign));
return half(detail::binary,
detail::fixed2half<half::round_style, 23, false, false, false>(
m, exp - 1, sign));
#endif
}
/// Maximum of half expressions.
/// **See also:** Documentation for
/// [std::fmax](https://en.cppreference.com/w/cpp/numeric/math/fmax). \param x
/// first operand \param y second operand \return maximum of operands, ignoring
/// quiet NaNs \exception FE_INVALID if \a x or \a y is signaling NaN
inline HALF_CONSTEXPR_NOERR half fmax(half x, half y) {
return half(
detail::binary,
(!isnan(y) &&
(isnan(x) || (x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) <
(y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15))))))
? detail::select(y.data_, x.data_)
: detail::select(x.data_, y.data_));
}
/// Minimum of half expressions.
/// **See also:** Documentation for
/// [std::fmin](https://en.cppreference.com/w/cpp/numeric/math/fmin). \param x
/// first operand \param y second operand \return minimum of operands, ignoring
/// quiet NaNs \exception FE_INVALID if \a x or \a y is signaling NaN
inline HALF_CONSTEXPR_NOERR half fmin(half x, half y) {
return half(
detail::binary,
(!isnan(y) &&
(isnan(x) || (x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) >
(y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15))))))
? detail::select(y.data_, x.data_)
: detail::select(x.data_, y.data_));
}
/// Positive difference.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::fdim](https://en.cppreference.com/w/cpp/numeric/math/fdim). \param x
/// first operand \param y second operand \return \a x - \a y or 0 if difference
/// negative \exception FE_... according to operator-(half,half)
inline half fdim(half x, half y) {
if (isnan(x) || isnan(y))
return half(detail::binary, detail::signal(x.data_, y.data_));
return (x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) <=
(y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15))))
? half(detail::binary, 0)
: (x - y);
}
/// Get NaN value.
/// **See also:** Documentation for
/// [std::nan](https://en.cppreference.com/w/cpp/numeric/math/nan). \param arg
/// string code \return quiet NaN
inline half nanh(const char *arg) {
unsigned int value = 0x7FFF;
while (*arg) value ^= static_cast<unsigned>(*arg++) & 0xFF;
return half(detail::binary, value);
}
/// \}
/// \anchor exponential
/// \name Exponential functions
/// \{
/// Exponential function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::exp](https://en.cppreference.com/w/cpp/numeric/math/exp). \param arg
/// function argument \return e raised to \a arg \exception FE_INVALID for
/// signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to
/// rounding
inline half exp(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
std::exp(detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, e = (abs >> 10) + (abs <= 0x3FF), exp;
if (!abs) return half(detail::binary, 0x3C00);
if (abs >= 0x7C00)
return half(detail::binary, (abs == 0x7C00)
? (0x7C00 & ((arg.data_ >> 15) - 1U))
: detail::signal(arg.data_));
if (abs >= 0x4C80)
return half(detail::binary, (arg.data_ & 0x8000)
? detail::underflow<half::round_style>()
: detail::overflow<half::round_style>());
detail::uint32 m = detail::multiply64(
static_cast<detail::uint32>((abs & 0x3FF) + ((abs > 0x3FF) << 10)) << 21,
0xB8AA3B29);
if (e < 14) {
exp = 0;
m >>= 14 - e;
} else {
exp = m >> (45 - e);
m = (m << (e - 14)) & 0x7FFFFFFF;
}
return half(detail::binary, detail::exp2_post<half::round_style>(
m, exp, (arg.data_ & 0x8000) != 0, 0, 26));
#endif
}
/// Binary exponential.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::exp2](https://en.cppreference.com/w/cpp/numeric/math/exp2). \param arg
/// function argument \return 2 raised to \a arg \exception FE_INVALID for
/// signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to
/// rounding
inline half exp2(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::exp2(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, e = (abs >> 10) + (abs <= 0x3FF),
exp = (abs & 0x3FF) + ((abs > 0x3FF) << 10);
if (!abs) return half(detail::binary, 0x3C00);
if (abs >= 0x7C00)
return half(detail::binary, (abs == 0x7C00)
? (0x7C00 & ((arg.data_ >> 15) - 1U))
: detail::signal(arg.data_));
if (abs >= 0x4E40)
return half(detail::binary, (arg.data_ & 0x8000)
? detail::underflow<half::round_style>()
: detail::overflow<half::round_style>());
return half(detail::binary,
detail::exp2_post<half::round_style>(
(static_cast<detail::uint32>(exp) << (6 + e)) & 0x7FFFFFFF,
exp >> (25 - e), (arg.data_ & 0x8000) != 0, 0, 28));
#endif
}
/// Exponential minus one.
/// This function may be 1 ULP off the correctly rounded exact result in <0.05%
/// of inputs for `std::round_to_nearest` and in <1% of inputs for any other
/// rounding mode.
///
/// **See also:** Documentation for
/// [std::expm1](https://en.cppreference.com/w/cpp/numeric/math/expm1). \param
/// arg function argument \return e raised to \a arg and subtracted by 1
/// \exception FE_INVALID for signaling NaN
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half expm1(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::expm1(
detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000,
e = (abs >> 10) + (abs <= 0x3FF), exp;
if (!abs) return arg;
if (abs >= 0x7C00)
return half(detail::binary, (abs == 0x7C00) ? (0x7C00 + (sign >> 1))
: detail::signal(arg.data_));
if (abs >= 0x4A00)
return half(detail::binary,
(arg.data_ & 0x8000)
? detail::rounded<half::round_style, true>(0xBBFF, 1, 1)
: detail::overflow<half::round_style>());
detail::uint32 m = detail::multiply64(
static_cast<detail::uint32>((abs & 0x3FF) + ((abs > 0x3FF) << 10)) << 21,
0xB8AA3B29);
if (e < 14) {
exp = 0;
m >>= 14 - e;
} else {
exp = m >> (45 - e);
m = (m << (e - 14)) & 0x7FFFFFFF;
}
m = detail::exp2(m);
if (sign) {
int s = 0;
if (m > 0x80000000) {
++exp;
m = detail::divide64(0x80000000, m, s);
}
m = 0x80000000 -
((m >> exp) |
((m & ((static_cast<detail::uint32>(1) << exp) - 1)) != 0) | s);
exp = 0;
} else
m -= (exp < 31) ? (0x80000000 >> exp) : 1;
for (exp += 14; m < 0x80000000 && exp; m <<= 1, --exp)
;
if (exp > 29)
return half(detail::binary, detail::overflow<half::round_style>());
return half(detail::binary, detail::rounded<half::round_style, true>(
sign + (exp << 10) + (m >> 21), (m >> 20) & 1,
(m & 0xFFFFF) != 0));
#endif
}
/// Natural logarithm.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::log](https://en.cppreference.com/w/cpp/numeric/math/log). \param arg
/// function argument \return logarithm of \a arg to base e \exception
/// FE_INVALID for signaling NaN or negative argument \exception FE_DIVBYZERO
/// for 0 \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half log(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
std::log(detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp = -15;
if (!abs) return half(detail::binary, detail::pole(0x8000));
if (arg.data_ & 0x8000)
return half(detail::binary, (arg.data_ <= 0xFC00)
? detail::invalid()
: detail::signal(arg.data_));
if (abs >= 0x7C00)
return (abs == 0x7C00) ? arg
: half(detail::binary, detail::signal(arg.data_));
for (; abs < 0x400; abs <<= 1, --exp)
;
exp += abs >> 10;
return half(
detail::binary,
detail::log2_post<half::round_style, 0xB8AA3B2A>(
detail::log2(static_cast<detail::uint32>((abs & 0x3FF) | 0x400) << 20,
27) +
8,
exp, 17));
#endif
}
/// Common logarithm.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::log10](https://en.cppreference.com/w/cpp/numeric/math/log10). \param
/// arg function argument \return logarithm of \a arg to base 10 \exception
/// FE_INVALID for signaling NaN or negative argument \exception FE_DIVBYZERO
/// for 0 \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half log10(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::log10(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp = -15;
if (!abs) return half(detail::binary, detail::pole(0x8000));
if (arg.data_ & 0x8000)
return half(detail::binary, (arg.data_ <= 0xFC00)
? detail::invalid()
: detail::signal(arg.data_));
if (abs >= 0x7C00)
return (abs == 0x7C00) ? arg
: half(detail::binary, detail::signal(arg.data_));
switch (abs) {
case 0x4900: return half(detail::binary, 0x3C00);
case 0x5640: return half(detail::binary, 0x4000);
case 0x63D0: return half(detail::binary, 0x4200);
case 0x70E2: return half(detail::binary, 0x4400);
}
for (; abs < 0x400; abs <<= 1, --exp)
;
exp += abs >> 10;
return half(
detail::binary,
detail::log2_post<half::round_style, 0xD49A784C>(
detail::log2(static_cast<detail::uint32>((abs & 0x3FF) | 0x400) << 20,
27) +
8,
exp, 16));
#endif
}
/// Binary logarithm.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::log2](https://en.cppreference.com/w/cpp/numeric/math/log2). \param arg
/// function argument \return logarithm of \a arg to base 2 \exception
/// FE_INVALID for signaling NaN or negative argument \exception FE_DIVBYZERO
/// for 0 \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half log2(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::log2(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp = -15, s = 0;
if (!abs) return half(detail::binary, detail::pole(0x8000));
if (arg.data_ & 0x8000)
return half(detail::binary, (arg.data_ <= 0xFC00)
? detail::invalid()
: detail::signal(arg.data_));
if (abs >= 0x7C00)
return (abs == 0x7C00) ? arg
: half(detail::binary, detail::signal(arg.data_));
if (abs == 0x3C00) return half(detail::binary, 0);
for (; abs < 0x400; abs <<= 1, --exp)
;
exp += (abs >> 10);
if (!(abs & 0x3FF)) {
unsigned int value = static_cast<unsigned>(exp < 0) << 15, m = std::abs(exp)
<< 6;
for (exp = 18; m < 0x400; m <<= 1, --exp)
;
return half(detail::binary, value + (exp << 10) + m);
}
detail::uint32 ilog = exp, sign = detail::sign_mask(ilog),
m = (((ilog << 27) +
(detail::log2(
static_cast<detail::uint32>((abs & 0x3FF) | 0x400)
<< 20,
28) >>
4)) ^
sign) -
sign;
if (!m) return half(detail::binary, 0);
for (exp = 14; m < 0x8000000 && exp; m <<= 1, --exp)
;
for (; m > 0xFFFFFFF; m >>= 1, ++exp) s |= m & 1;
return half(detail::binary,
detail::fixed2half<half::round_style, 27, false, false, true>(
m, exp, sign & 0x8000, s));
#endif
}
/// Natural logarithm plus one.
/// This function may be 1 ULP off the correctly rounded exact result in <0.05%
/// of inputs for `std::round_to_nearest` and in ~1% of inputs for any other
/// rounding mode.
///
/// **See also:** Documentation for
/// [std::log1p](https://en.cppreference.com/w/cpp/numeric/math/log1p). \param
/// arg function argument \return logarithm of \a arg plus 1 to base e
/// \exception FE_INVALID for signaling NaN or argument <-1
/// \exception FE_DIVBYZERO for -1
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half log1p(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::log1p(
detail::half2float<detail::internal_t>(arg.data_))));
#else
if (arg.data_ >= 0xBC00)
return half(detail::binary, (arg.data_ == 0xBC00)
? detail::pole(0x8000)
: (arg.data_ <= 0xFC00)
? detail::invalid()
: detail::signal(arg.data_));
int abs = arg.data_ & 0x7FFF, exp = -15;
if (!abs || abs >= 0x7C00)
return (abs > 0x7C00) ? half(detail::binary, detail::signal(arg.data_))
: arg;
for (; abs < 0x400; abs <<= 1, --exp)
;
exp += abs >> 10;
detail::uint32 m = static_cast<detail::uint32>((abs & 0x3FF) | 0x400) << 20;
if (arg.data_ & 0x8000) {
m = 0x40000000 - (m >> -exp);
for (exp = 0; m < 0x40000000; m <<= 1, --exp)
;
} else {
if (exp < 0) {
m = 0x40000000 + (m >> -exp);
exp = 0;
} else {
m += 0x40000000 >> exp;
int i = m >> 31;
m >>= i;
exp += i;
}
}
return half(detail::binary, detail::log2_post<half::round_style, 0xB8AA3B2A>(
detail::log2(m), exp, 17));
#endif
}
/// \}
/// \anchor power
/// \name Power functions
/// \{
/// Square root.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::sqrt](https://en.cppreference.com/w/cpp/numeric/math/sqrt). \param arg
/// function argument \return square root of \a arg \exception FE_INVALID for
/// signaling NaN and negative arguments \exception FE_INEXACT according to
/// rounding
inline half sqrt(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::sqrt(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp = 15;
if (!abs || arg.data_ >= 0x7C00)
return half(detail::binary,
(abs > 0x7C00)
? detail::signal(arg.data_)
: (arg.data_ > 0x8000) ? detail::invalid() : arg.data_);
for (; abs < 0x400; abs <<= 1, --exp)
;
detail::uint32 r = static_cast<detail::uint32>((abs & 0x3FF) | 0x400) << 10,
m = detail::sqrt<20>(r, exp += abs >> 10);
return half(detail::binary, detail::rounded<half::round_style, false>(
(exp << 10) + (m & 0x3FF), r > m, r != 0));
#endif
}
/// Inverse square root.
/// This function is exact to rounding for all rounding modes and thus generally
/// more accurate than directly computing 1 / sqrt(\a arg) in half-precision, in
/// addition to also being faster. \param arg function argument \return
/// reciprocal of square root of \a arg \exception FE_INVALID for signaling NaN
/// and negative arguments \exception FE_INEXACT according to rounding
inline half rsqrt(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(
detail::binary,
detail::float2half<half::round_style>(
detail::internal_t(1) /
std::sqrt(detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF, bias = 0x4000;
if (!abs || arg.data_ >= 0x7C00)
return half(detail::binary,
(abs > 0x7C00)
? detail::signal(arg.data_)
: (arg.data_ > 0x8000)
? detail::invalid()
: !abs ? detail::pole(arg.data_ & 0x8000) : 0);
for (; abs < 0x400; abs <<= 1, bias -= 0x400)
;
unsigned int frac = (abs += bias) & 0x7FF;
if (frac == 0x400) return half(detail::binary, 0x7A00 - (abs >> 1));
if ((half::round_style == std::round_to_nearest &&
(frac == 0x3FE || frac == 0x76C)) ||
(half::round_style != std::round_to_nearest &&
(frac == 0x15A || frac == 0x3FC || frac == 0x401 || frac == 0x402 ||
frac == 0x67B)))
return pow(arg, half(detail::binary, 0xB800));
detail::uint32 f = 0x17376 - abs, mx = (abs & 0x3FF) | 0x400,
my = ((f >> 1) & 0x3FF) | 0x400, mz = my * my;
int expy = (f >> 11) - 31, expx = 32 - (abs >> 10), i = mz >> 21;
for (mz = 0x60000000 - (((mz >> i) * mx) >> (expx - 2 * expy - i));
mz < 0x40000000; mz <<= 1, --expy)
;
i = (my *= mz >> 10) >> 31;
expy += i;
my = (my >> (20 + i)) + 1;
i = (mz = my * my) >> 21;
for (mz = 0x60000000 - (((mz >> i) * mx) >> (expx - 2 * expy - i));
mz < 0x40000000; mz <<= 1, --expy)
;
i = (my *= (mz >> 10) + 1) >> 31;
return half(detail::binary,
detail::fixed2half<half::round_style, 30, false, false, true>(
my >> i, expy + i + 14));
#endif
}
/// Cubic root.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::cbrt](https://en.cppreference.com/w/cpp/numeric/math/cbrt). \param arg
/// function argument \return cubic root of \a arg \exception FE_INVALID for
/// signaling NaN \exception FE_INEXACT according to rounding
inline half cbrt(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::cbrt(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp = -15;
if (!abs || abs == 0x3C00 || abs >= 0x7C00)
return (abs > 0x7C00) ? half(detail::binary, detail::signal(arg.data_))
: arg;
for (; abs < 0x400; abs <<= 1, --exp)
;
detail::uint32 ilog = exp + (abs >> 10), sign = detail::sign_mask(ilog), f,
m = (((ilog << 27) +
(detail::log2(
static_cast<detail::uint32>((abs & 0x3FF) | 0x400)
<< 20,
24) >>
4)) ^
sign) -
sign;
for (exp = 2; m < 0x80000000; m <<= 1, --exp)
;
m = detail::multiply64(m, 0xAAAAAAAB);
int i = m >> 31, s;
exp += i;
m <<= 1 - i;
if (exp < 0) {
f = m >> -exp;
exp = 0;
} else {
f = (m << exp) & 0x7FFFFFFF;
exp = m >> (31 - exp);
}
m = detail::exp2(f, (half::round_style == std::round_to_nearest) ? 29 : 26);
if (sign) {
if (m > 0x80000000) {
m = detail::divide64(0x80000000, m, s);
++exp;
}
exp = -exp;
}
return half(
detail::binary,
(half::round_style == std::round_to_nearest)
? detail::fixed2half<half::round_style, 31, false, false, false>(
m, exp + 14, arg.data_ & 0x8000)
: detail::fixed2half<half::round_style, 23, false, false, false>(
(m + 0x80) >> 8, exp + 14, arg.data_ & 0x8000));
#endif
}
/// Hypotenuse function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot). \param x
/// first argument \param y second argument \return square root of sum of
/// squares without internal over- or underflows \exception FE_INVALID if \a x
/// or \a y is signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT
/// according to rounding of the final square root
inline half hypot(half x, half y) {
#ifdef HALF_ARITHMETIC_TYPE
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_),
fy = detail::half2float<detail::internal_t>(y.data_);
#if HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::hypot(fx, fy)));
#else
return half(detail::binary, detail::float2half<half::round_style>(
std::sqrt(fx * fx + fy * fy)));
#endif
#else
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, expx = 0, expy = 0;
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary, (absx == 0x7C00)
? detail::select(0x7C00, y.data_)
: (absy == 0x7C00)
? detail::select(0x7C00, x.data_)
: detail::signal(x.data_, y.data_));
if (!absx)
return half(detail::binary, absy ? detail::check_underflow(absy) : 0);
if (!absy) return half(detail::binary, detail::check_underflow(absx));
if (absy > absx) std::swap(absx, absy);
for (; absx < 0x400; absx <<= 1, --expx)
;
for (; absy < 0x400; absy <<= 1, --expy)
;
detail::uint32 mx = (absx & 0x3FF) | 0x400, my = (absy & 0x3FF) | 0x400;
mx *= mx;
my *= my;
int ix = mx >> 21, iy = my >> 21;
expx = 2 * (expx + (absx >> 10)) - 15 + ix;
expy = 2 * (expy + (absy >> 10)) - 15 + iy;
mx <<= 10 - ix;
my <<= 10 - iy;
int d = expx - expy;
my = (d < 30) ? ((my >> d) |
((my & ((static_cast<detail::uint32>(1) << d) - 1)) != 0))
: 1;
return half(detail::binary,
detail::hypot_post<half::round_style>(mx + my, expx));
#endif
}
/// Hypotenuse function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::hypot](https://en.cppreference.com/w/cpp/numeric/math/hypot). \param x
/// first argument \param y second argument \param z third argument \return
/// square root of sum of squares without internal over- or underflows
/// \exception FE_INVALID if \a x, \a y or \a z is signaling NaN
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding of
/// the final square root
inline half hypot(half x, half y, half z) {
#ifdef HALF_ARITHMETIC_TYPE
detail::internal_t fx = detail::half2float<detail::internal_t>(x.data_),
fy = detail::half2float<detail::internal_t>(y.data_),
fz = detail::half2float<detail::internal_t>(z.data_);
return half(detail::binary, detail::float2half<half::round_style>(
std::sqrt(fx * fx + fy * fy + fz * fz)));
#else
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, absz = z.data_ & 0x7FFF,
expx = 0, expy = 0, expz = 0;
if (!absx) return hypot(y, z);
if (!absy) return hypot(x, z);
if (!absz) return hypot(x, y);
if (absx >= 0x7C00 || absy >= 0x7C00 || absz >= 0x7C00)
return half(
detail::binary,
(absx == 0x7C00)
? detail::select(0x7C00, detail::select(y.data_, z.data_))
: (absy == 0x7C00)
? detail::select(0x7C00, detail::select(x.data_, z.data_))
: (absz == 0x7C00)
? detail::select(0x7C00,
detail::select(x.data_, y.data_))
: detail::signal(x.data_, y.data_, z.data_));
if (absz > absy) std::swap(absy, absz);
if (absy > absx) std::swap(absx, absy);
if (absz > absy) std::swap(absy, absz);
for (; absx < 0x400; absx <<= 1, --expx)
;
for (; absy < 0x400; absy <<= 1, --expy)
;
for (; absz < 0x400; absz <<= 1, --expz)
;
detail::uint32 mx = (absx & 0x3FF) | 0x400, my = (absy & 0x3FF) | 0x400,
mz = (absz & 0x3FF) | 0x400;
mx *= mx;
my *= my;
mz *= mz;
int ix = mx >> 21, iy = my >> 21, iz = mz >> 21;
expx = 2 * (expx + (absx >> 10)) - 15 + ix;
expy = 2 * (expy + (absy >> 10)) - 15 + iy;
expz = 2 * (expz + (absz >> 10)) - 15 + iz;
mx <<= 10 - ix;
my <<= 10 - iy;
mz <<= 10 - iz;
int d = expy - expz;
mz = (d < 30) ? ((mz >> d) |
((mz & ((static_cast<detail::uint32>(1) << d) - 1)) != 0))
: 1;
my += mz;
if (my & 0x80000000) {
my = (my >> 1) | (my & 1);
if (++expy > expx) {
std::swap(mx, my);
std::swap(expx, expy);
}
}
d = expx - expy;
my = (d < 30) ? ((my >> d) |
((my & ((static_cast<detail::uint32>(1) << d) - 1)) != 0))
: 1;
return half(detail::binary,
detail::hypot_post<half::round_style>(mx + my, expx));
#endif
}
/// Power function.
/// This function may be 1 ULP off the correctly rounded exact result for any
/// rounding mode in ~0.00025% of inputs.
///
/// **See also:** Documentation for
/// [std::pow](https://en.cppreference.com/w/cpp/numeric/math/pow). \param x
/// base \param y exponent \return \a x raised to \a y \exception FE_INVALID if
/// \a x or \a y is signaling NaN or if \a x is finite an negative and \a y is
/// finite and not integral \exception FE_DIVBYZERO if \a x is 0 and \a y is
/// negative \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to
/// rounding
inline half pow(half x, half y) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
std::pow(detail::half2float<detail::internal_t>(x.data_),
detail::half2float<detail::internal_t>(y.data_))));
#else
int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF, exp = -15;
if (!absy || x.data_ == 0x3C00)
return half(
detail::binary,
detail::select(0x3C00, (x.data_ == 0x3C00) ? y.data_ : x.data_));
bool is_int = absy >= 0x6400 ||
(absy >= 0x3C00 && !(absy & ((1 << (25 - (absy >> 10))) - 1)));
unsigned int sign =
x.data_ & (static_cast<unsigned>((absy < 0x6800) && is_int &&
((absy >> (25 - (absy >> 10))) & 1))
<< 15);
if (absx >= 0x7C00 || absy >= 0x7C00)
return half(detail::binary,
(absx > 0x7C00 || absy > 0x7C00)
? detail::signal(x.data_, y.data_)
: (absy == 0x7C00)
? ((absx == 0x3C00)
? 0x3C00
: (!absx && y.data_ == 0xFC00)
? detail::pole()
: (0x7C00 &
-((y.data_ >> 15) ^ (absx > 0x3C00))))
: (sign | (0x7C00 & ((y.data_ >> 15) - 1U))));
if (!absx)
return half(detail::binary, (y.data_ & 0x8000) ? detail::pole(sign) : sign);
if ((x.data_ & 0x8000) && !is_int)
return half(detail::binary, detail::invalid());
if (x.data_ == 0xBC00) return half(detail::binary, sign | 0x3C00);
switch (y.data_) {
case 0x3800: return sqrt(x);
case 0x3C00: return half(detail::binary, detail::check_underflow(x.data_));
case 0x4000: return x * x;
case 0xBC00: return half(detail::binary, 0x3C00) / x;
}
for (; absx < 0x400; absx <<= 1, --exp)
;
detail::uint32 ilog = exp + (absx >> 10), msign = detail::sign_mask(ilog), f,
m = (((ilog << 27) +
((detail::log2(
static_cast<detail::uint32>((absx & 0x3FF) | 0x400)
<< 20) +
8) >>
4)) ^
msign) -
msign;
for (exp = -11; m < 0x80000000; m <<= 1, --exp)
;
for (; absy < 0x400; absy <<= 1, --exp)
;
m = detail::multiply64(m, static_cast<detail::uint32>((absy & 0x3FF) | 0x400)
<< 21);
int i = m >> 31;
exp += (absy >> 10) + i;
m <<= 1 - i;
if (exp < 0) {
f = m >> -exp;
exp = 0;
} else {
f = (m << exp) & 0x7FFFFFFF;
exp = m >> (31 - exp);
}
return half(detail::binary,
detail::exp2_post<half::round_style>(
f, exp, ((msign & 1) ^ (y.data_ >> 15)) != 0, sign));
#endif
}
/// \}
/// \anchor trigonometric
/// \name Trigonometric functions
/// \{
/// Compute sine and cosine simultaneously.
/// This returns the same results as sin() and cos() but is faster than
/// calling each function individually.
///
/// This function is exact to rounding for all rounding modes.
/// \param arg function argument
/// \param sin variable to take sine of \a arg
/// \param cos variable to take cosine of \a arg
/// \exception FE_INVALID for signaling NaN or infinity
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline void sincos(half arg, half *sin, half *cos) {
#ifdef HALF_ARITHMETIC_TYPE
detail::internal_t f = detail::half2float<detail::internal_t>(arg.data_);
*sin =
half(detail::binary, detail::float2half<half::round_style>(std::sin(f)));
*cos =
half(detail::binary, detail::float2half<half::round_style>(std::cos(f)));
#else
int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15, k;
if (abs >= 0x7C00)
*sin = *cos =
half(detail::binary,
(abs == 0x7C00) ? detail::invalid() : detail::signal(arg.data_));
else if (!abs) {
*sin = arg;
*cos = half(detail::binary, 0x3C00);
} else if (abs < 0x2500) {
*sin = half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_ - 1, 1, 1));
*cos = half(detail::binary,
detail::rounded<half::round_style, true>(0x3BFF, 1, 1));
} else {
if (half::round_style != std::round_to_nearest) {
switch (abs) {
case 0x48B7:
*sin =
half(detail::binary, detail::rounded<half::round_style, true>(
(~arg.data_ & 0x8000) | 0x1D07, 1, 1));
*cos = half(detail::binary,
detail::rounded<half::round_style, true>(0xBBFF, 1, 1));
return;
case 0x598C:
*sin = half(detail::binary, detail::rounded<half::round_style, true>(
(arg.data_ & 0x8000) | 0x3BFF, 1, 1));
*cos = half(detail::binary,
detail::rounded<half::round_style, true>(0x80FC, 1, 1));
return;
case 0x6A64:
*sin =
half(detail::binary, detail::rounded<half::round_style, true>(
(~arg.data_ & 0x8000) | 0x3BFE, 1, 1));
*cos = half(detail::binary,
detail::rounded<half::round_style, true>(0x27FF, 1, 1));
return;
case 0x6D8C:
*sin = half(detail::binary, detail::rounded<half::round_style, true>(
(arg.data_ & 0x8000) | 0x0FE6, 1, 1));
*cos = half(detail::binary,
detail::rounded<half::round_style, true>(0x3BFF, 1, 1));
return;
}
}
std::pair<detail::uint32, detail::uint32> sc =
detail::sincos(detail::angle_arg(abs, k), 28);
switch (k & 3) {
case 1: sc = std::make_pair(sc.second, -sc.first); break;
case 2: sc = std::make_pair(-sc.first, -sc.second); break;
case 3: sc = std::make_pair(-sc.second, sc.first); break;
}
*sin = half(detail::binary,
detail::fixed2half<half::round_style, 30, true, true, true>(
(sc.first ^ -static_cast<detail::uint32>(sign)) + sign));
*cos = half(
detail::binary,
detail::fixed2half<half::round_style, 30, true, true, true>(sc.second));
}
#endif
}
/// Sine function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::sin](https://en.cppreference.com/w/cpp/numeric/math/sin). \param arg
/// function argument \return sine value of \a arg \exception FE_INVALID for
/// signaling NaN or infinity \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT
/// according to rounding
inline half sin(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
std::sin(detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, k;
if (!abs) return arg;
if (abs >= 0x7C00)
return half(detail::binary, (abs == 0x7C00) ? detail::invalid()
: detail::signal(arg.data_));
if (abs < 0x2900)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_ - 1, 1, 1));
if (half::round_style != std::round_to_nearest) switch (abs) {
case 0x48B7:
return half(detail::binary, detail::rounded<half::round_style, true>(
(~arg.data_ & 0x8000) | 0x1D07, 1, 1));
case 0x6A64:
return half(detail::binary, detail::rounded<half::round_style, true>(
(~arg.data_ & 0x8000) | 0x3BFE, 1, 1));
case 0x6D8C:
return half(detail::binary, detail::rounded<half::round_style, true>(
(arg.data_ & 0x8000) | 0x0FE6, 1, 1));
}
std::pair<detail::uint32, detail::uint32> sc =
detail::sincos(detail::angle_arg(abs, k), 28);
detail::uint32 sign =
-static_cast<detail::uint32>(((k >> 1) & 1) ^ (arg.data_ >> 15));
return half(detail::binary,
detail::fixed2half<half::round_style, 30, true, true, true>(
(((k & 1) ? sc.second : sc.first) ^ sign) - sign));
#endif
}
/// Cosine function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::cos](https://en.cppreference.com/w/cpp/numeric/math/cos). \param arg
/// function argument \return cosine value of \a arg \exception FE_INVALID for
/// signaling NaN or infinity \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT
/// according to rounding
inline half cos(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
std::cos(detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, k;
if (!abs) return half(detail::binary, 0x3C00);
if (abs >= 0x7C00)
return half(detail::binary, (abs == 0x7C00) ? detail::invalid()
: detail::signal(arg.data_));
if (abs < 0x2500)
return half(detail::binary,
detail::rounded<half::round_style, true>(0x3BFF, 1, 1));
if (half::round_style != std::round_to_nearest && abs == 0x598C)
return half(detail::binary,
detail::rounded<half::round_style, true>(0x80FC, 1, 1));
std::pair<detail::uint32, detail::uint32> sc =
detail::sincos(detail::angle_arg(abs, k), 28);
detail::uint32 sign = -static_cast<detail::uint32>(((k >> 1) ^ k) & 1);
return half(detail::binary,
detail::fixed2half<half::round_style, 30, true, true, true>(
(((k & 1) ? sc.first : sc.second) ^ sign) - sign));
#endif
}
/// Tangent function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::tan](https://en.cppreference.com/w/cpp/numeric/math/tan). \param arg
/// function argument \return tangent value of \a arg \exception FE_INVALID for
/// signaling NaN or infinity \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT
/// according to rounding
inline half tan(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
std::tan(detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp = 13, k;
if (!abs) return arg;
if (abs >= 0x7C00)
return half(detail::binary, (abs == 0x7C00) ? detail::invalid()
: detail::signal(arg.data_));
if (abs < 0x2700)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_, 0, 1));
if (half::round_style != std::round_to_nearest) switch (abs) {
case 0x658C:
return half(detail::binary, detail::rounded<half::round_style, true>(
(arg.data_ & 0x8000) | 0x07E6, 1, 1));
case 0x7330:
return half(detail::binary, detail::rounded<half::round_style, true>(
(~arg.data_ & 0x8000) | 0x4B62, 1, 1));
}
std::pair<detail::uint32, detail::uint32> sc =
detail::sincos(detail::angle_arg(abs, k), 30);
if (k & 1) sc = std::make_pair(-sc.second, sc.first);
detail::uint32 signy = detail::sign_mask(sc.first),
signx = detail::sign_mask(sc.second);
detail::uint32 my = (sc.first ^ signy) - signy,
mx = (sc.second ^ signx) - signx;
for (; my < 0x80000000; my <<= 1, --exp)
;
for (; mx < 0x80000000; mx <<= 1, ++exp)
;
return half(detail::binary,
detail::tangent_post<half::round_style>(
my, mx, exp, (signy ^ signx ^ arg.data_) & 0x8000));
#endif
}
/// Arc sine.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::asin](https://en.cppreference.com/w/cpp/numeric/math/asin). \param arg
/// function argument \return arc sine value of \a arg \exception FE_INVALID for
/// signaling NaN or if abs(\a arg) > 1 \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half asin(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::asin(
detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
if (!abs) return arg;
if (abs >= 0x3C00)
return half(detail::binary,
(abs > 0x7C00)
? detail::signal(arg.data_)
: (abs > 0x3C00) ? detail::invalid()
: detail::rounded<half::round_style, true>(
sign | 0x3E48, 0, 1));
if (abs < 0x2900)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_, 0, 1));
if (half::round_style != std::round_to_nearest &&
(abs == 0x2B44 || abs == 0x2DC3))
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_ + 1, 1, 1));
std::pair<detail::uint32, detail::uint32> sc = detail::atan2_args(abs);
detail::uint32 m =
detail::atan2(sc.first, sc.second,
(half::round_style == std::round_to_nearest) ? 27 : 26);
return half(detail::binary,
detail::fixed2half<half::round_style, 30, false, true, true>(
m, 14, sign));
#endif
}
/// Arc cosine function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::acos](https://en.cppreference.com/w/cpp/numeric/math/acos). \param arg
/// function argument \return arc cosine value of \a arg \exception FE_INVALID
/// for signaling NaN or if abs(\a arg) > 1 \exception FE_OVERFLOW,
/// ...UNDERFLOW, ...INEXACT according to rounding
inline half acos(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::acos(
detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ >> 15;
if (!abs)
return half(detail::binary,
detail::rounded<half::round_style, true>(0x3E48, 0, 1));
if (abs >= 0x3C00)
return half(detail::binary,
(abs > 0x7C00)
? detail::signal(arg.data_)
: (abs > 0x3C00)
? detail::invalid()
: sign ? detail::rounded<half::round_style, true>(
0x4248, 0, 1)
: 0);
std::pair<detail::uint32, detail::uint32> cs = detail::atan2_args(abs);
detail::uint32 m = detail::atan2(cs.second, cs.first, 28);
return half(detail::binary,
detail::fixed2half<half::round_style, 31, false, true, true>(
sign ? (0xC90FDAA2 - m) : m, 15, 0, sign));
#endif
}
/// Arc tangent function.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::atan](https://en.cppreference.com/w/cpp/numeric/math/atan). \param arg
/// function argument \return arc tangent value of \a arg \exception FE_INVALID
/// for signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according
/// to rounding
inline half atan(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::atan(
detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
if (!abs) return arg;
if (abs >= 0x7C00)
return half(detail::binary, (abs == 0x7C00)
? detail::rounded<half::round_style, true>(
sign | 0x3E48, 0, 1)
: detail::signal(arg.data_));
if (abs <= 0x2700)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_ - 1, 1, 1));
int exp = (abs >> 10) + (abs <= 0x3FF);
detail::uint32 my = (abs & 0x3FF) | ((abs > 0x3FF) << 10);
detail::uint32 m =
(exp > 15) ? detail::atan2(
my << 19, 0x20000000 >> (exp - 15),
(half::round_style == std::round_to_nearest) ? 26 : 24)
: detail::atan2(
my << (exp + 4), 0x20000000,
(half::round_style == std::round_to_nearest) ? 30 : 28);
return half(detail::binary,
detail::fixed2half<half::round_style, 30, false, true, true>(
m, 14, sign));
#endif
}
/// Arc tangent function.
/// This function may be 1 ULP off the correctly rounded exact result in ~0.005%
/// of inputs for `std::round_to_nearest`, in ~0.1% of inputs for
/// `std::round_toward_zero` and in ~0.02% of inputs for any other rounding
/// mode.
///
/// **See also:** Documentation for
/// [std::atan2](https://en.cppreference.com/w/cpp/numeric/math/atan2). \param y
/// numerator \param x denominator \return arc tangent value \exception
/// FE_INVALID if \a x or \a y is signaling NaN \exception FE_OVERFLOW,
/// ...UNDERFLOW, ...INEXACT according to rounding
inline half atan2(half y, half x) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(
std::atan2(detail::half2float<detail::internal_t>(y.data_),
detail::half2float<detail::internal_t>(x.data_))));
#else
unsigned int absx = x.data_ & 0x7FFF, absy = y.data_ & 0x7FFF,
signx = x.data_ >> 15, signy = y.data_ & 0x8000;
if (absx >= 0x7C00 || absy >= 0x7C00) {
if (absx > 0x7C00 || absy > 0x7C00)
return half(detail::binary, detail::signal(x.data_, y.data_));
if (absy == 0x7C00)
return half(
detail::binary,
(absx < 0x7C00)
? detail::rounded<half::round_style, true>(signy | 0x3E48, 0, 1)
: signx ? detail::rounded<half::round_style, true>(signy | 0x40B6,
0, 1)
: detail::rounded<half::round_style, true>(signy | 0x3A48,
0, 1));
return (x.data_ == 0x7C00)
? half(detail::binary, signy)
: half(detail::binary, detail::rounded<half::round_style, true>(
signy | 0x4248, 0, 1));
}
if (!absy)
return signx
? half(detail::binary, detail::rounded<half::round_style, true>(
signy | 0x4248, 0, 1))
: y;
if (!absx)
return half(detail::binary,
detail::rounded<half::round_style, true>(signy | 0x3E48, 0, 1));
int d = (absy >> 10) + (absy <= 0x3FF) - (absx >> 10) - (absx <= 0x3FF);
if (d > (signx ? 18 : 12))
return half(detail::binary,
detail::rounded<half::round_style, true>(signy | 0x3E48, 0, 1));
if (signx && d < -11)
return half(detail::binary,
detail::rounded<half::round_style, true>(signy | 0x4248, 0, 1));
if (!signx &&
d < ((half::round_style == std::round_toward_zero) ? -15 : -9)) {
for (; absy < 0x400; absy <<= 1, --d)
;
detail::uint32 mx = ((absx << 1) & 0x7FF) | 0x800,
my = ((absy << 1) & 0x7FF) | 0x800;
int i = my < mx;
d -= i;
if (d < -25)
return half(detail::binary, detail::underflow<half::round_style>(signy));
my <<= 11 + i;
return half(detail::binary,
detail::fixed2half<half::round_style, 11, false, false, true>(
my / mx, d + 14, signy, my % mx != 0));
}
detail::uint32 m =
detail::atan2(((absy & 0x3FF) | ((absy > 0x3FF) << 10))
<< (19 + ((d < 0) ? d : (d > 0) ? 0 : -1)),
((absx & 0x3FF) | ((absx > 0x3FF) << 10))
<< (19 - ((d > 0) ? d : (d < 0) ? 0 : 1)));
return half(detail::binary,
detail::fixed2half<half::round_style, 31, false, true, true>(
signx ? (0xC90FDAA2 - m) : m, 15, signy, signx));
#endif
}
/// \}
/// \anchor hyperbolic
/// \name Hyperbolic functions
/// \{
/// Hyperbolic sine.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::sinh](https://en.cppreference.com/w/cpp/numeric/math/sinh). \param arg
/// function argument \return hyperbolic sine value of \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half sinh(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::sinh(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp;
if (!abs || abs >= 0x7C00)
return (abs > 0x7C00) ? half(detail::binary, detail::signal(arg.data_))
: arg;
if (abs <= 0x2900)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_, 0, 1));
std::pair<detail::uint32, detail::uint32> mm = detail::hyperbolic_args(
abs, exp, (half::round_style == std::round_to_nearest) ? 29 : 27);
detail::uint32 m = mm.first - mm.second;
for (exp += 13; m < 0x80000000 && exp; m <<= 1, --exp)
;
unsigned int sign = arg.data_ & 0x8000;
if (exp > 29)
return half(detail::binary, detail::overflow<half::round_style>(sign));
return half(detail::binary,
detail::fixed2half<half::round_style, 31, false, false, true>(
m, exp, sign));
#endif
}
/// Hyperbolic cosine.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::cosh](https://en.cppreference.com/w/cpp/numeric/math/cosh). \param arg
/// function argument \return hyperbolic cosine value of \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half cosh(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::cosh(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp;
if (!abs) return half(detail::binary, 0x3C00);
if (abs >= 0x7C00)
return half(detail::binary,
(abs > 0x7C00) ? detail::signal(arg.data_) : 0x7C00);
std::pair<detail::uint32, detail::uint32> mm = detail::hyperbolic_args(
abs, exp, (half::round_style == std::round_to_nearest) ? 23 : 26);
detail::uint32 m = mm.first + mm.second, i = (~m & 0xFFFFFFFF) >> 31;
m = (m >> i) | (m & i) | 0x80000000;
if ((exp += 13 + i) > 29)
return half(detail::binary, detail::overflow<half::round_style>());
return half(
detail::binary,
detail::fixed2half<half::round_style, 31, false, false, true>(m, exp));
#endif
}
/// Hyperbolic tangent.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::tanh](https://en.cppreference.com/w/cpp/numeric/math/tanh). \param arg
/// function argument \return hyperbolic tangent value of \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half tanh(half arg) {
#ifdef HALF_ARITHMETIC_TYPE
return half(detail::binary,
detail::float2half<half::round_style>(std::tanh(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp;
if (!abs) return arg;
if (abs >= 0x7C00)
return half(detail::binary, (abs > 0x7C00) ? detail::signal(arg.data_)
: (arg.data_ - 0x4000));
if (abs >= 0x4500)
return half(detail::binary, detail::rounded<half::round_style, true>(
(arg.data_ & 0x8000) | 0x3BFF, 1, 1));
if (abs < 0x2700)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_ - 1, 1, 1));
if (half::round_style != std::round_to_nearest && abs == 0x2D3F)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_ - 3, 0, 1));
std::pair<detail::uint32, detail::uint32> mm =
detail::hyperbolic_args(abs, exp, 27);
detail::uint32 my = mm.first - mm.second -
(half::round_style != std::round_to_nearest),
mx = mm.first + mm.second, i = (~mx & 0xFFFFFFFF) >> 31;
for (exp = 13; my < 0x80000000; my <<= 1, --exp)
;
mx = (mx >> i) | 0x80000000;
return half(detail::binary, detail::tangent_post<half::round_style>(
my, mx, exp - i, arg.data_ & 0x8000));
#endif
}
/// Hyperbolic area sine.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::asinh](https://en.cppreference.com/w/cpp/numeric/math/asinh). \param
/// arg function argument \return area sine value of \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half asinh(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::asinh(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF;
if (!abs || abs >= 0x7C00)
return (abs > 0x7C00) ? half(detail::binary, detail::signal(arg.data_))
: arg;
if (abs <= 0x2900)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_ - 1, 1, 1));
if (half::round_style != std::round_to_nearest) switch (abs) {
case 0x32D4:
return half(detail::binary, detail::rounded<half::round_style, true>(
arg.data_ - 13, 1, 1));
case 0x3B5B:
return half(detail::binary, detail::rounded<half::round_style, true>(
arg.data_ - 197, 1, 1));
}
return half(detail::binary, detail::area<half::round_style, true>(arg.data_));
#endif
}
/// Hyperbolic area cosine.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::acosh](https://en.cppreference.com/w/cpp/numeric/math/acosh). \param
/// arg function argument \return area cosine value of \a arg \exception
/// FE_INVALID for signaling NaN or arguments <1 \exception FE_OVERFLOW,
/// ...UNDERFLOW, ...INEXACT according to rounding
inline half acosh(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::acosh(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF;
if ((arg.data_ & 0x8000) || abs < 0x3C00)
return half(detail::binary, (abs <= 0x7C00) ? detail::invalid()
: detail::signal(arg.data_));
if (abs == 0x3C00) return half(detail::binary, 0);
if (arg.data_ >= 0x7C00)
return (abs > 0x7C00) ? half(detail::binary, detail::signal(arg.data_))
: arg;
return half(detail::binary,
detail::area<half::round_style, false>(arg.data_));
#endif
}
/// Hyperbolic area tangent.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::atanh](https://en.cppreference.com/w/cpp/numeric/math/atanh). \param
/// arg function argument \return area tangent value of \a arg \exception
/// FE_INVALID for signaling NaN or if abs(\a arg) > 1 \exception FE_DIVBYZERO
/// for +/-1 \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to
/// rounding
inline half atanh(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::atanh(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF, exp = 0;
if (!abs) return arg;
if (abs >= 0x3C00)
return half(detail::binary,
(abs == 0x3C00) ? detail::pole(arg.data_ & 0x8000)
: (abs <= 0x7C00) ? detail::invalid()
: detail::signal(arg.data_));
if (abs < 0x2700)
return half(detail::binary,
detail::rounded<half::round_style, true>(arg.data_, 0, 1));
detail::uint32 m = static_cast<detail::uint32>((abs & 0x3FF) |
((abs > 0x3FF) << 10))
<< ((abs >> 10) + (abs <= 0x3FF) + 6),
my = 0x80000000 + m, mx = 0x80000000 - m;
for (; mx < 0x80000000; mx <<= 1, ++exp)
;
int i = my >= mx, s;
return half(
detail::binary,
detail::log2_post<half::round_style, 0xB8AA3B2A>(
detail::log2((detail::divide64(my >> i, mx, s) + 1) >> 1, 27) + 0x10,
exp + i - 1, 16, arg.data_ & 0x8000));
#endif
}
/// \}
/// \anchor special
/// \name Error and gamma functions
/// \{
/// Error function.
/// This function may be 1 ULP off the correctly rounded exact result for any
/// rounding mode in <0.5% of inputs.
///
/// **See also:** Documentation for
/// [std::erf](https://en.cppreference.com/w/cpp/numeric/math/erf). \param arg
/// function argument \return error function value of \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half erf(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(
std::erf(detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF;
if (!abs || abs >= 0x7C00)
return (abs >= 0x7C00) ? half(detail::binary,
(abs == 0x7C00) ? (arg.data_ - 0x4000)
: detail::signal(arg.data_))
: arg;
if (abs >= 0x4200)
return half(detail::binary, detail::rounded<half::round_style, true>(
(arg.data_ & 0x8000) | 0x3BFF, 1, 1));
return half(detail::binary, detail::erf<half::round_style, false>(arg.data_));
#endif
}
/// Complementary error function.
/// This function may be 1 ULP off the correctly rounded exact result for any
/// rounding mode in <0.5% of inputs.
///
/// **See also:** Documentation for
/// [std::erfc](https://en.cppreference.com/w/cpp/numeric/math/erfc). \param arg
/// function argument \return 1 minus error function value of \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
inline half erfc(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::erfc(
detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
if (abs >= 0x7C00)
return (abs >= 0x7C00)
? half(detail::binary,
(abs == 0x7C00) ? (sign >> 1) : detail::signal(arg.data_))
: arg;
if (!abs) return half(detail::binary, 0x3C00);
if (abs >= 0x4400)
return half(detail::binary, detail::rounded<half::round_style, true>(
(sign >> 1) - (sign >> 15), sign >> 15, 1));
return half(detail::binary, detail::erf<half::round_style, true>(arg.data_));
#endif
}
/// Natural logarithm of gamma function.
/// This function may be 1 ULP off the correctly rounded exact result for any
/// rounding mode in ~0.025% of inputs.
///
/// **See also:** Documentation for
/// [std::lgamma](https://en.cppreference.com/w/cpp/numeric/math/lgamma). \param
/// arg function argument \return natural logarith of gamma function for \a arg
/// \exception FE_INVALID for signaling NaN
/// \exception FE_DIVBYZERO for 0 or negative integer arguments
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half lgamma(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::lgamma(
detail::half2float<detail::internal_t>(arg.data_))));
#else
int abs = arg.data_ & 0x7FFF;
if (abs >= 0x7C00)
return half(detail::binary,
(abs == 0x7C00) ? 0x7C00 : detail::signal(arg.data_));
if (!abs || arg.data_ >= 0xE400 ||
(arg.data_ >= 0xBC00 && !(abs & ((1 << (25 - (abs >> 10))) - 1))))
return half(detail::binary, detail::pole());
if (arg.data_ == 0x3C00 || arg.data_ == 0x4000)
return half(detail::binary, 0);
return half(detail::binary,
detail::gamma<half::round_style, true>(arg.data_));
#endif
}
/// Gamma function.
/// This function may be 1 ULP off the correctly rounded exact result for any
/// rounding mode in <0.25% of inputs.
///
/// **See also:** Documentation for
/// [std::tgamma](https://en.cppreference.com/w/cpp/numeric/math/tgamma). \param
/// arg function argument \return gamma function value of \a arg \exception
/// FE_INVALID for signaling NaN, negative infinity or negative integer
/// arguments \exception FE_DIVBYZERO for 0 \exception FE_OVERFLOW,
/// ...UNDERFLOW, ...INEXACT according to rounding
inline half tgamma(half arg) {
#if defined(HALF_ARITHMETIC_TYPE) && HALF_ENABLE_CPP11_CMATH
return half(detail::binary,
detail::float2half<half::round_style>(std::tgamma(
detail::half2float<detail::internal_t>(arg.data_))));
#else
unsigned int abs = arg.data_ & 0x7FFF;
if (!abs) return half(detail::binary, detail::pole(arg.data_));
if (abs >= 0x7C00)
return (arg.data_ == 0x7C00)
? arg
: half(detail::binary, detail::signal(arg.data_));
if (arg.data_ >= 0xE400 ||
(arg.data_ >= 0xBC00 && !(abs & ((1 << (25 - (abs >> 10))) - 1))))
return half(detail::binary, detail::invalid());
if (arg.data_ >= 0xCA80)
return half(detail::binary,
detail::underflow<half::round_style>(
(1 - ((abs >> (25 - (abs >> 10))) & 1)) << 15));
if (arg.data_ <= 0x100 || (arg.data_ >= 0x4900 && arg.data_ < 0x8000))
return half(detail::binary, detail::overflow<half::round_style>());
if (arg.data_ == 0x3C00) return arg;
return half(detail::binary,
detail::gamma<half::round_style, false>(arg.data_));
#endif
}
/// \}
/// \anchor rounding
/// \name Rounding
/// \{
/// Nearest integer not less than half value.
/// **See also:** Documentation for
/// [std::ceil](https://en.cppreference.com/w/cpp/numeric/math/ceil). \param arg
/// half to round \return nearest integer not less than \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_INEXACT if value had to be
/// rounded
inline half ceil(half arg) {
return half(
detail::binary,
detail::integral<std::round_toward_infinity, true, true>(arg.data_));
}
/// Nearest integer not greater than half value.
/// **See also:** Documentation for
/// [std::floor](https://en.cppreference.com/w/cpp/numeric/math/floor). \param
/// arg half to round \return nearest integer not greater than \a arg \exception
/// FE_INVALID for signaling NaN \exception FE_INEXACT if value had to be
/// rounded
inline half floor(half arg) {
return half(
detail::binary,
detail::integral<std::round_toward_neg_infinity, true, true>(arg.data_));
}
/// Nearest integer not greater in magnitude than half value.
/// **See also:** Documentation for
/// [std::trunc](https://en.cppreference.com/w/cpp/numeric/math/trunc). \param
/// arg half to round \return nearest integer not greater in magnitude than \a
/// arg \exception FE_INVALID for signaling NaN \exception FE_INEXACT if value
/// had to be rounded
inline half trunc(half arg) {
return half(detail::binary,
detail::integral<std::round_toward_zero, true, true>(arg.data_));
}
/// Nearest integer.
/// **See also:** Documentation for
/// [std::round](https://en.cppreference.com/w/cpp/numeric/math/round). \param
/// arg half to round \return nearest integer, rounded away from zero in
/// half-way cases \exception FE_INVALID for signaling NaN \exception FE_INEXACT
/// if value had to be rounded
inline half round(half arg) {
return half(detail::binary,
detail::integral<std::round_to_nearest, false, true>(arg.data_));
}
/// Nearest integer.
/// **See also:** Documentation for
/// [std::lround](https://en.cppreference.com/w/cpp/numeric/math/round). \param
/// arg half to round \return nearest integer, rounded away from zero in
/// half-way cases \exception FE_INVALID if value is not representable as `long`
inline long lround(half arg) {
return detail::half2int<std::round_to_nearest, false, false, long>(arg.data_);
}
/// Nearest integer using half's internal rounding mode.
/// **See also:** Documentation for
/// [std::rint](https://en.cppreference.com/w/cpp/numeric/math/rint). \param arg
/// half expression to round \return nearest integer using default rounding mode
/// \exception FE_INVALID for signaling NaN
/// \exception FE_INEXACT if value had to be rounded
inline half rint(half arg) {
return half(detail::binary,
detail::integral<half::round_style, true, true>(arg.data_));
}
/// Nearest integer using half's internal rounding mode.
/// **See also:** Documentation for
/// [std::lrint](https://en.cppreference.com/w/cpp/numeric/math/rint). \param
/// arg half expression to round \return nearest integer using default rounding
/// mode \exception FE_INVALID if value is not representable as `long`
/// \exception FE_INEXACT if value had to be rounded
inline long lrint(half arg) {
return detail::half2int<half::round_style, true, true, long>(arg.data_);
}
/// Nearest integer using half's internal rounding mode.
/// **See also:** Documentation for
/// [std::nearbyint](https://en.cppreference.com/w/cpp/numeric/math/nearbyint).
/// \param arg half expression to round
/// \return nearest integer using default rounding mode
/// \exception FE_INVALID for signaling NaN
inline half nearbyint(half arg) {
return half(detail::binary,
detail::integral<half::round_style, true, false>(arg.data_));
}
#if HALF_ENABLE_CPP11_LONG_LONG
/// Nearest integer.
/// **See also:** Documentation for
/// [std::llround](https://en.cppreference.com/w/cpp/numeric/math/round). \param
/// arg half to round \return nearest integer, rounded away from zero in
/// half-way cases \exception FE_INVALID if value is not representable as `long
/// long`
inline long long llround(half arg) {
return detail::half2int<std::round_to_nearest, false, false, long long>(
arg.data_);
}
/// Nearest integer using half's internal rounding mode.
/// **See also:** Documentation for
/// [std::llrint](https://en.cppreference.com/w/cpp/numeric/math/rint). \param
/// arg half expression to round \return nearest integer using default rounding
/// mode \exception FE_INVALID if value is not representable as `long long`
/// \exception FE_INEXACT if value had to be rounded
inline long long llrint(half arg) {
return detail::half2int<half::round_style, true, true, long long>(arg.data_);
}
#endif
/// \}
/// \anchor float
/// \name Floating point manipulation
/// \{
/// Decompress floating-point number.
/// **See also:** Documentation for
/// [std::frexp](https://en.cppreference.com/w/cpp/numeric/math/frexp). \param
/// arg number to decompress \param exp address to store exponent at \return
/// significant in range [0.5, 1) \exception FE_INVALID for signaling NaN
inline half frexp(half arg, int *exp) {
*exp = 0;
unsigned int abs = arg.data_ & 0x7FFF;
if (abs >= 0x7C00 || !abs)
return (abs > 0x7C00) ? half(detail::binary, detail::signal(arg.data_))
: arg;
for (; abs < 0x400; abs <<= 1, --*exp)
;
*exp += (abs >> 10) - 14;
return half(detail::binary, (arg.data_ & 0x8000) | 0x3800 | (abs & 0x3FF));
}
/// Multiply by power of two.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::scalbln](https://en.cppreference.com/w/cpp/numeric/math/scalbn).
/// \param arg number to modify
/// \param exp power of two to multiply with
/// \return \a arg multplied by 2 raised to \a exp
/// \exception FE_INVALID for signaling NaN
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half scalbln(half arg, long exp) {
unsigned int abs = arg.data_ & 0x7FFF, sign = arg.data_ & 0x8000;
if (abs >= 0x7C00 || !abs)
return (abs > 0x7C00) ? half(detail::binary, detail::signal(arg.data_))
: arg;
for (; abs < 0x400; abs <<= 1, --exp)
;
exp += abs >> 10;
if (exp > 30)
return half(detail::binary, detail::overflow<half::round_style>(sign));
else if (exp < -10)
return half(detail::binary, detail::underflow<half::round_style>(sign));
else if (exp > 0)
return half(detail::binary, sign | (exp << 10) | (abs & 0x3FF));
unsigned int m = (abs & 0x3FF) | 0x400;
return half(detail::binary, detail::rounded<half::round_style, false>(
sign | (m >> (1 - exp)), (m >> -exp) & 1,
(m & ((1 << -exp) - 1)) != 0));
}
/// Multiply by power of two.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::scalbn](https://en.cppreference.com/w/cpp/numeric/math/scalbn). \param
/// arg number to modify \param exp power of two to multiply with \return \a arg
/// multplied by 2 raised to \a exp \exception FE_INVALID for signaling NaN
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half scalbn(half arg, int exp) { return scalbln(arg, exp); }
/// Multiply by power of two.
/// This function is exact to rounding for all rounding modes.
///
/// **See also:** Documentation for
/// [std::ldexp](https://en.cppreference.com/w/cpp/numeric/math/ldexp). \param
/// arg number to modify \param exp power of two to multiply with \return \a arg
/// multplied by 2 raised to \a exp \exception FE_INVALID for signaling NaN
/// \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT according to rounding
inline half ldexp(half arg, int exp) { return scalbln(arg, exp); }
/// Extract integer and fractional parts.
/// **See also:** Documentation for
/// [std::modf](https://en.cppreference.com/w/cpp/numeric/math/modf). \param arg
/// number to decompress \param iptr address to store integer part at \return
/// fractional part \exception FE_INVALID for signaling NaN
inline half modf(half arg, half *iptr) {
unsigned int abs = arg.data_ & 0x7FFF;
if (abs > 0x7C00) {
arg = half(detail::binary, detail::signal(arg.data_));
return *iptr = arg, arg;
}
if (abs >= 0x6400)
return *iptr = arg, half(detail::binary, arg.data_ & 0x8000);
if (abs < 0x3C00) return iptr->data_ = arg.data_ & 0x8000, arg;
unsigned int exp = abs >> 10, mask = (1 << (25 - exp)) - 1,
m = arg.data_ & mask;
iptr->data_ = arg.data_ & ~mask;
if (!m) return half(detail::binary, arg.data_ & 0x8000);
for (; m < 0x400; m <<= 1, --exp)
;
return half(detail::binary, (arg.data_ & 0x8000) | (exp << 10) | (m & 0x3FF));
}
/// Extract exponent.
/// **See also:** Documentation for
/// [std::ilogb](https://en.cppreference.com/w/cpp/numeric/math/ilogb). \param
/// arg number to query \return floating-point exponent \retval FP_ILOGB0 for
/// zero \retval FP_ILOGBNAN for NaN \retval INT_MAX for infinity \exception
/// FE_INVALID for 0 or infinite values
inline int ilogb(half arg) {
int abs = arg.data_ & 0x7FFF, exp;
if (!abs || abs >= 0x7C00) {
detail::raise(FE_INVALID);
return !abs ? FP_ILOGB0 : (abs == 0x7C00) ? INT_MAX : FP_ILOGBNAN;
}
for (exp = (abs >> 10) - 15; abs < 0x200; abs <<= 1, --exp)
;
return exp;
}
/// Extract exponent.
/// **See also:** Documentation for
/// [std::logb](https://en.cppreference.com/w/cpp/numeric/math/logb). \param arg
/// number to query \return floating-point exponent \exception FE_INVALID for
/// signaling NaN \exception FE_DIVBYZERO for 0
inline half logb(half arg) {
int abs = arg.data_ & 0x7FFF, exp;
if (!abs) return half(detail::binary, detail::pole(0x8000));
if (abs >= 0x7C00)
return half(detail::binary,
(abs == 0x7C00) ? 0x7C00 : detail::signal(arg.data_));
for (exp = (abs >> 10) - 15; abs < 0x200; abs <<= 1, --exp)
;
unsigned int value = static_cast<unsigned>(exp < 0) << 15;
if (exp) {
unsigned int m = std::abs(exp) << 6;
for (exp = 18; m < 0x400; m <<= 1, --exp)
;
value |= (exp << 10) + m;
}
return half(detail::binary, value);
}
/// Next representable value.
/// **See also:** Documentation for
/// [std::nextafter](https://en.cppreference.com/w/cpp/numeric/math/nextafter).
/// \param from value to compute next representable value for
/// \param to direction towards which to compute next value
/// \return next representable value after \a from in direction towards \a to
/// \exception FE_INVALID for signaling NaN
/// \exception FE_OVERFLOW for infinite result from finite argument
/// \exception FE_UNDERFLOW for subnormal result
inline half nextafter(half from, half to) {
int fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;
if (fabs > 0x7C00 || tabs > 0x7C00)
return half(detail::binary, detail::signal(from.data_, to.data_));
if (from.data_ == to.data_ || !(fabs | tabs)) return to;
if (!fabs) {
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
return half(detail::binary, (to.data_ & 0x8000) + 1);
}
unsigned int out =
from.data_ +
(((from.data_ >> 15) ^
static_cast<unsigned>(
(from.data_ ^ (0x8000 | (0x8000 - (from.data_ >> 15)))) <
(to.data_ ^ (0x8000 | (0x8000 - (to.data_ >> 15))))))
<< 1) -
1;
detail::raise(FE_OVERFLOW, fabs < 0x7C00 && (out & 0x7C00) == 0x7C00);
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT &&
(out & 0x7C00) < 0x400);
return half(detail::binary, out);
}
/// Next representable value.
/// **See also:** Documentation for
/// [std::nexttoward](https://en.cppreference.com/w/cpp/numeric/math/nexttoward).
/// \param from value to compute next representable value for
/// \param to direction towards which to compute next value
/// \return next representable value after \a from in direction towards \a to
/// \exception FE_INVALID for signaling NaN
/// \exception FE_OVERFLOW for infinite result from finite argument
/// \exception FE_UNDERFLOW for subnormal result
inline half nexttoward(half from, long double to) {
int fabs = from.data_ & 0x7FFF;
if (fabs > 0x7C00) return half(detail::binary, detail::signal(from.data_));
long double lfrom = static_cast<long double>(from);
if (detail::builtin_isnan(to) || lfrom == to)
return half(static_cast<float>(to));
if (!fabs) {
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT);
return half(detail::binary,
(static_cast<unsigned>(detail::builtin_signbit(to)) << 15) + 1);
}
unsigned int out =
from.data_ +
(((from.data_ >> 15) ^ static_cast<unsigned>(lfrom < to)) << 1) - 1;
detail::raise(FE_OVERFLOW, (out & 0x7FFF) == 0x7C00);
detail::raise(FE_UNDERFLOW, !HALF_ERRHANDLING_UNDERFLOW_TO_INEXACT &&
(out & 0x7FFF) < 0x400);
return half(detail::binary, out);
}
/// Take sign.
/// **See also:** Documentation for
/// [std::copysign](https://en.cppreference.com/w/cpp/numeric/math/copysign).
/// \param x value to change sign for
/// \param y value to take sign from
/// \return value equal to \a x in magnitude and to \a y in sign
inline HALF_CONSTEXPR half copysign(half x, half y) {
return half(detail::binary, x.data_ ^ ((x.data_ ^ y.data_) & 0x8000));
}
/// \}
/// \anchor classification
/// \name Floating point classification
/// \{
/// Classify floating-point value.
/// **See also:** Documentation for
/// [std::fpclassify](https://en.cppreference.com/w/cpp/numeric/math/fpclassify).
/// \param arg number to classify
/// \retval FP_ZERO for positive and negative zero
/// \retval FP_SUBNORMAL for subnormal numbers
/// \retval FP_INFINITY for positive and negative infinity
/// \retval FP_NAN for NaNs
/// \retval FP_NORMAL for all other (normal) values
inline HALF_CONSTEXPR int fpclassify(half arg) {
return !(arg.data_ & 0x7FFF)
? FP_ZERO
: ((arg.data_ & 0x7FFF) < 0x400)
? FP_SUBNORMAL
: ((arg.data_ & 0x7FFF) < 0x7C00)
? FP_NORMAL
: ((arg.data_ & 0x7FFF) == 0x7C00) ? FP_INFINITE
: FP_NAN;
}
/// Check if finite number.
/// **See also:** Documentation for
/// [std::isfinite](https://en.cppreference.com/w/cpp/numeric/math/isfinite).
/// \param arg number to check
/// \retval true if neither infinity nor NaN
/// \retval false else
inline HALF_CONSTEXPR bool isfinite(half arg) {
return (arg.data_ & 0x7C00) != 0x7C00;
}
/// Check for infinity.
/// **See also:** Documentation for
/// [std::isinf](https://en.cppreference.com/w/cpp/numeric/math/isinf). \param
/// arg number to check \retval true for positive or negative infinity \retval
/// false else
inline HALF_CONSTEXPR bool isinf(half arg) {
return (arg.data_ & 0x7FFF) == 0x7C00;
}
/// Check for NaN.
/// **See also:** Documentation for
/// [std::isnan](https://en.cppreference.com/w/cpp/numeric/math/isnan). \param
/// arg number to check \retval true for NaNs \retval false else
inline HALF_CONSTEXPR bool isnan(half arg) {
return (arg.data_ & 0x7FFF) > 0x7C00;
}
/// Check if normal number.
/// **See also:** Documentation for
/// [std::isnormal](https://en.cppreference.com/w/cpp/numeric/math/isnormal).
/// \param arg number to check
/// \retval true if normal number
/// \retval false if either subnormal, zero, infinity or NaN
inline HALF_CONSTEXPR bool isnormal(half arg) {
return ((arg.data_ & 0x7C00) != 0) & ((arg.data_ & 0x7C00) != 0x7C00);
}
/// Check sign.
/// **See also:** Documentation for
/// [std::signbit](https://en.cppreference.com/w/cpp/numeric/math/signbit).
/// \param arg number to check
/// \retval true for negative number
/// \retval false for positive number
inline HALF_CONSTEXPR bool signbit(half arg) {
return (arg.data_ & 0x8000) != 0;
}
/// \}
/// \anchor compfunc
/// \name Comparison
/// \{
/// Quiet comparison for greater than.
/// **See also:** Documentation for
/// [std::isgreater](https://en.cppreference.com/w/cpp/numeric/math/isgreater).
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater than \a y
/// \retval false else
inline HALF_CONSTEXPR bool isgreater(half x, half y) {
return ((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) + (x.data_ >> 15)) >
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15)) &&
!isnan(x) && !isnan(y);
}
/// Quiet comparison for greater equal.
/// **See also:** Documentation for
/// [std::isgreaterequal](https://en.cppreference.com/w/cpp/numeric/math/isgreaterequal).
/// \param x first operand
/// \param y second operand
/// \retval true if \a x greater equal \a y
/// \retval false else
inline HALF_CONSTEXPR bool isgreaterequal(half x, half y) {
return ((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) +
(x.data_ >> 15)) >=
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15)) &&
!isnan(x) && !isnan(y);
}
/// Quiet comparison for less than.
/// **See also:** Documentation for
/// [std::isless](https://en.cppreference.com/w/cpp/numeric/math/isless). \param
/// x first operand \param y second operand \retval true if \a x less than \a y
/// \retval false else
inline HALF_CONSTEXPR bool isless(half x, half y) {
return ((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) + (x.data_ >> 15)) <
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15)) &&
!isnan(x) && !isnan(y);
}
/// Quiet comparison for less equal.
/// **See also:** Documentation for
/// [std::islessequal](https://en.cppreference.com/w/cpp/numeric/math/islessequal).
/// \param x first operand
/// \param y second operand
/// \retval true if \a x less equal \a y
/// \retval false else
inline HALF_CONSTEXPR bool islessequal(half x, half y) {
return ((x.data_ ^ (0x8000 | (0x8000 - (x.data_ >> 15)))) +
(x.data_ >> 15)) <=
((y.data_ ^ (0x8000 | (0x8000 - (y.data_ >> 15)))) +
(y.data_ >> 15)) &&
!isnan(x) && !isnan(y);
}
/// Quiet comarison for less or greater.
/// **See also:** Documentation for
/// [std::islessgreater](https://en.cppreference.com/w/cpp/numeric/math/islessgreater).
/// \param x first operand
/// \param y second operand
/// \retval true if either less or greater
/// \retval false else
inline HALF_CONSTEXPR bool islessgreater(half x, half y) {
return x.data_ != y.data_ && ((x.data_ | y.data_) & 0x7FFF) && !isnan(x) &&
!isnan(y);
}
/// Quiet check if unordered.
/// **See also:** Documentation for
/// [std::isunordered](https://en.cppreference.com/w/cpp/numeric/math/isunordered).
/// \param x first operand
/// \param y second operand
/// \retval true if unordered (one or two NaN operands)
/// \retval false else
inline HALF_CONSTEXPR bool isunordered(half x, half y) {
return isnan(x) || isnan(y);
}
/// \}
/// \anchor casting
/// \name Casting
/// \{
/// Cast to or from half-precision floating-point number.
/// This casts between [half](\ref half_float::half) and any built-in arithmetic
/// type. The values are converted directly using the default rounding mode,
/// without any roundtrip over `float` that a `static_cast` would otherwise do.
///
/// Using this cast with neither of the two types being a [half](\ref
/// half_float::half) or with any of the two types not being a built-in
/// arithmetic type (apart from [half](\ref half_float::half), of course)
/// results in a compiler error and casting between [half](\ref
/// half_float::half)s returns the argument unmodified. \tparam T destination
/// type (half or built-in arithmetic type) \tparam U source type (half or
/// built-in arithmetic type) \param arg value to cast \return \a arg converted
/// to destination type \exception FE_INVALID if \a T is integer type and result
/// is not representable as \a T \exception FE_OVERFLOW, ...UNDERFLOW,
/// ...INEXACT according to rounding
template <typename T, typename U>
T half_cast(U arg) {
return detail::half_caster<T, U>::cast(arg);
}
/// Cast to or from half-precision floating-point number.
/// This casts between [half](\ref half_float::half) and any built-in arithmetic
/// type. The values are converted directly using the specified rounding mode,
/// without any roundtrip over `float` that a `static_cast` would otherwise do.
///
/// Using this cast with neither of the two types being a [half](\ref
/// half_float::half) or with any of the two types not being a built-in
/// arithmetic type (apart from [half](\ref half_float::half), of course)
/// results in a compiler error and casting between [half](\ref
/// half_float::half)s returns the argument unmodified. \tparam T destination
/// type (half or built-in arithmetic type) \tparam R rounding mode to use.
/// \tparam U source type (half or built-in arithmetic type)
/// \param arg value to cast
/// \return \a arg converted to destination type
/// \exception FE_INVALID if \a T is integer type and result is not
/// representable as \a T \exception FE_OVERFLOW, ...UNDERFLOW, ...INEXACT
/// according to rounding
template <typename T, std::float_round_style R, typename U>
T half_cast(U arg) {
return detail::half_caster<T, U, R>::cast(arg);
}
/// \}
/// \}
/// \anchor errors
/// \name Error handling
/// \{
/// Clear exception flags.
/// This function works even if [automatic exception flag handling](\ref
/// HALF_ERRHANDLING_FLAGS) is disabled, but in that case manual flag management
/// is the only way to raise flags.
///
/// **See also:** Documentation for
/// [std::feclearexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feclearexcept).
/// \param excepts OR of exceptions to clear
/// \retval 0 all selected flags cleared successfully
inline int feclearexcept(int excepts) {
detail::errflags() &= ~excepts;
return 0;
}
/// Test exception flags.
/// This function works even if [automatic exception flag handling](\ref
/// HALF_ERRHANDLING_FLAGS) is disabled, but in that case manual flag management
/// is the only way to raise flags.
///
/// **See also:** Documentation for
/// [std::fetestexcept](https://en.cppreference.com/w/cpp/numeric/fenv/fetestexcept).
/// \param excepts OR of exceptions to test
/// \return OR of selected exceptions if raised
inline int fetestexcept(int excepts) { return detail::errflags() & excepts; }
/// Raise exception flags.
/// This raises the specified floating point exceptions and also invokes any
/// additional automatic exception handling as configured with the
/// [HALF_ERRHANDLIG_...](\ref HALF_ERRHANDLING_ERRNO) preprocessor symbols.
/// This function works even if [automatic exception flag handling](\ref
/// HALF_ERRHANDLING_FLAGS) is disabled, but in that case manual flag management
/// is the only way to raise flags.
///
/// **See also:** Documentation for
/// [std::feraiseexcept](https://en.cppreference.com/w/cpp/numeric/fenv/feraiseexcept).
/// \param excepts OR of exceptions to raise
/// \retval 0 all selected exceptions raised successfully
inline int feraiseexcept(int excepts) {
detail::errflags() |= excepts;
detail::raise(excepts);
return 0;
}
/// Save exception flags.
/// This function works even if [automatic exception flag handling](\ref
/// HALF_ERRHANDLING_FLAGS) is disabled, but in that case manual flag management
/// is the only way to raise flags.
///
/// **See also:** Documentation for
/// [std::fegetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
/// \param flagp adress to store flag state at
/// \param excepts OR of flags to save
/// \retval 0 for success
inline int fegetexceptflag(int *flagp, int excepts) {
*flagp = detail::errflags() & excepts;
return 0;
}
/// Restore exception flags.
/// This only copies the specified exception state (including unset flags)
/// without incurring any additional exception handling. This function works
/// even if [automatic exception flag handling](\ref HALF_ERRHANDLING_FLAGS) is
/// disabled, but in that case manual flag management is the only way to raise
/// flags.
///
/// **See also:** Documentation for
/// [std::fesetexceptflag](https://en.cppreference.com/w/cpp/numeric/fenv/feexceptflag).
/// \param flagp adress to take flag state from
/// \param excepts OR of flags to restore
/// \retval 0 for success
inline int fesetexceptflag(const int *flagp, int excepts) {
detail::errflags() =
(detail::errflags() | (*flagp & excepts)) & (*flagp | ~excepts);
return 0;
}
/// Throw C++ exceptions based on set exception flags.
/// This function manually throws a corresponding C++ exception if one of the
/// specified flags is set, no matter if automatic throwing (via
/// [HALF_ERRHANDLING_THROW_...](\ref HALF_ERRHANDLING_THROW_INVALID)) is
/// enabled or not. This function works even if [automatic exception flag
/// handling](\ref HALF_ERRHANDLING_FLAGS) is disabled, but in that case manual
/// flag management is the only way to raise flags. \param excepts OR of
/// exceptions to test \param msg error message to use for exception description
/// \throw std::domain_error if `FE_INVALID` or `FE_DIVBYZERO` is selected and
/// set \throw std::overflow_error if `FE_OVERFLOW` is selected and set \throw
/// std::underflow_error if `FE_UNDERFLOW` is selected and set \throw
/// std::range_error if `FE_INEXACT` is selected and set
inline void fethrowexcept(int excepts, const char *msg = "") {
excepts &= detail::errflags();
if (excepts & (FE_INVALID | FE_DIVBYZERO)) throw std::domain_error(msg);
if (excepts & FE_OVERFLOW) throw std::overflow_error(msg);
if (excepts & FE_UNDERFLOW) throw std::underflow_error(msg);
if (excepts & FE_INEXACT) throw std::range_error(msg);
}
/// \}
} // namespace half_float
#undef HALF_UNUSED_NOERR
#undef HALF_CONSTEXPR
#undef HALF_CONSTEXPR_CONST
#undef HALF_CONSTEXPR_NOERR
#undef HALF_NOEXCEPT
#undef HALF_NOTHROW
#undef HALF_THREAD_LOCAL
#undef HALF_TWOS_COMPLEMENT_INT
#ifdef HALF_POP_WARNINGS
#pragma warning(pop)
#undef HALF_POP_WARNINGS
#endif
#endif