98 lines
2.7 KiB
C++
98 lines
2.7 KiB
C++
#include "mat_mul.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <mpi.h>
|
|
#include "util.h"
|
|
#include <algorithm>
|
|
|
|
static float *A, *B, *C;
|
|
static int M, N, K;
|
|
static int num_threads;
|
|
static int mpi_rank, mpi_world_size;
|
|
static int rows[4] = {0,};
|
|
static int offset[4] = {0,};
|
|
|
|
#define TILEM 32
|
|
#define TILEK 16
|
|
#define TILEN 2048
|
|
|
|
static void mat_mul_omp() {
|
|
// TODO: parallelize & optimize matrix multiplication
|
|
// Use num_threads per node
|
|
int start = 0;
|
|
int end = rows[mpi_rank];
|
|
#pragma omp parallel for num_threads(num_threads) schedule(dynamic)
|
|
for (int ii = start; ii < end; ii+=TILEM) {
|
|
for (int kk = 0; kk < K; kk+=TILEK) {
|
|
for(int jj = 0; jj < N; jj+=TILEN) {
|
|
int mk = std::min(kk + TILEK, K);
|
|
int mm = std::min(ii + TILEM, M);
|
|
int mn = std::min(jj + TILEN, N);
|
|
for(int i = ii; i < mm ; ++i) {
|
|
for(int k = kk; k < mk; ++k) {
|
|
for(int j = jj; j < mn; ++j) {
|
|
C[i * N + j] += A[i * K + k] * B[k * N + j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K,
|
|
int _num_threads, int _mpi_rank, int _mpi_world_size) {
|
|
A = _A, B = _B, C = _C;
|
|
M = _M, N = _N, K = _K;
|
|
num_threads = _num_threads, mpi_rank = _mpi_rank,
|
|
mpi_world_size = _mpi_world_size;
|
|
MPI_Request request;
|
|
MPI_Status status;
|
|
|
|
// TODO: parallelize & optimize matrix multiplication on multi-node
|
|
// You must allocate & initialize A, B, C for non-root processes
|
|
int num_row = M / mpi_world_size;
|
|
|
|
for (int i = 0; i < mpi_world_size; i++) {
|
|
//rows[i] = (i == mpi_world_size - 1) ? (M - (num_row * (mpi_world_size - 1))) : num_row;
|
|
if (i == mpi_world_size - 1)
|
|
rows[i] = (M - (num_row * (mpi_world_size - 1)));
|
|
else
|
|
rows[i] = num_row;
|
|
}
|
|
for (int i = 0; i < mpi_world_size - 1; i++) {
|
|
offset[i + 1] = offset[i] + rows[i];
|
|
}
|
|
|
|
if (mpi_rank != 0) {
|
|
M = rows[mpi_rank];
|
|
alloc_mat(&A, rows[mpi_rank], K);
|
|
alloc_mat(&B, K, N);
|
|
alloc_mat(&C, rows[mpi_rank], N);
|
|
}
|
|
|
|
MPI_Bcast(B, K * N, MPI_FLOAT, 0, MPI_COMM_WORLD);
|
|
|
|
if (mpi_rank == 0) {
|
|
for (int i = 1; i < mpi_world_size; i++)
|
|
MPI_Isend(&A[offset[i] * K], rows[i] * K, MPI_FLOAT, i, 0, MPI_COMM_WORLD, &request);
|
|
}
|
|
else {
|
|
MPI_Recv(A, rows[mpi_rank] * K, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
|
}
|
|
|
|
mat_mul_omp();
|
|
|
|
if (mpi_rank != 0) {
|
|
MPI_Isend(C, rows[mpi_rank] * N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
|
|
}
|
|
else {
|
|
for (int i = 1; i < mpi_world_size; i++)
|
|
MPI_Recv(&C[offset[i] * N], rows[i] * N, MPI_FLOAT, i, 0, MPI_COMM_WORLD, &status);
|
|
}
|
|
// FIXME: for now, only root process runs the matrix multiplication.
|
|
//if (mpi_rank == 0)
|
|
// mat_mul_omp();
|
|
}
|