blog/content/posts/2021-07-10-jeonsanyuceyeogh...

31 KiB
Raw Blame History

+++ date = 2021-07-10T08:23:47Z description = "" draft = false slug = "jeonsanyuceyeoghag-cfd-with-python-navier-stokes-equation" title = "[전산유체역학] CFD with Python (Navier-Stokes Equation)"

+++

1-D Linear Convection

1차원 선형 열전도 방정식은 가장 심플하면서도 가장 기초적인 방정식입니다.

 \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 

이 식을 오일러 방정식으로 변환하여 수치해석적으로 해를 구할 수 있도록 변환을 해줍니다.

 u_i^{n+1} = u_i^n - c \frac{\Delta t}{\Delta x}(u_i^n-u_{i-1}^n) 

이제 이 오일러 방정식을 파이썬으로 구현해봅니다.

import numpy
from matplotlib import pyplot
import time, sys
%matplotlib inline 

nx = 41  # try changing this number from 41 to 81 and Run All ... what happens?
dx = 2 / (nx-1)
nt = 25    #nt is the number of timesteps we want to calculate
dt = .025  #dt is the amount of time each timestep covers (delta t)
c = 1      #assume wavespeed of c = 1

u = numpy.ones(nx)      #numpy function ones()
u[int(.5 / dx):int(1 / dx + 1)] = 2  #setting u = 2 between 0.5 and 1 as per our I.C.s

un = numpy.ones(nx) #initialize a temporary array

for n in range(nt):  #loop for values of n from 0 to nt, so it will run nt times
    un = u.copy() ##copy the existing values of u into un
    for i in range(1, nx): ## you can try commenting this line and...
    #for i in range(nx): ## ... uncommenting this line and see what happens!
        u[i] = un[i] - c * dt / dx * (un[i] - un[i-1])

pyplot.plot(numpy.linspace(0, 2, nx), u);

{{< figure src="https://blog.kakaocdn.net/dn/ZbM8j/btq9fWovXzY/D1HOqkCqgkw9YLDpyMFxb1/img.png" >}}

1-D Convection Equation (Non-Linear)

 \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 
 u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) 
import numpy                 # we're importing numpy 
from matplotlib import pyplot    # and our 2D plotting library
%matplotlib inline


nx = 41
dx = 2 / (nx - 1)
nt = 20    #nt is the number of timesteps we want to calculate
dt = .025  #dt is the amount of time each timestep covers (delta t)

u = numpy.ones(nx)      #as before, we initialize u with every value equal to 1.
u[int(.5 / dx) : int(1 / dx + 1)] = 2  #then set u = 2 between 0.5 and 1 as per our I.C.s

un = numpy.ones(nx) #initialize our placeholder array un, to hold the time-stepped solution

for n in range(nt):  #iterate through time
    un = u.copy() ##copy the existing values of u into un
    for i in range(1, nx):  ##now we'll iterate through the u array
    
     ###This is the line from Step 1, copied exactly.  Edit it for our new equation.
     ###then uncomment it and run the cell to evaluate Step 2   
      
           ###u[i] = un[i] - c * dt / dx * (un[i] - un[i-1]) 

        
pyplot.plot(numpy.linspace(0, 2, nx), u) ##Plot the results

1-D Diffusion Equation

 \frac{\partial u}{\partial t}= \nu \frac{\partial^2 u}{\partial x^2} 
 u_{i}^{n+1}=u_{i}^{n}+\frac{\nu\Delta t}{\Delta x^2}(u_{i+1}^{n}-2u_{i}^{n}+u_{i-1}^{n}) 
import numpy                 #loading our favorite library
from matplotlib import pyplot    #and the useful plotting library
%matplotlib inline

nx = 41
dx = 2 / (nx - 1)
nt = 20    #the number of timesteps we want to calculate
nu = 0.3   #the value of viscosity
sigma = .2 #sigma is a parameter, we'll learn more about it later
dt = sigma * dx**2 / nu #dt is defined using sigma ... more later!


u = numpy.ones(nx)      #a numpy array with nx elements all equal to 1.
u[int(.5 / dx):int(1 / dx + 1)] = 2  #setting u = 2 between 0.5 and 1 as per our I.C.s

un = numpy.ones(nx) #our placeholder array, un, to advance the solution in time

for n in range(nt):  #iterate through time
    un = u.copy() ##copy the existing values of u into un
    for i in range(1, nx - 1):
        u[i] = un[i] + nu * dt / dx**2 * (un[i+1] - 2 * un[i] + un[i-1])
        
pyplot.plot(numpy.linspace(0, 2, nx), u);

{{< figure src="https://blog.kakaocdn.net/dn/oaKgN/btq9iA57vBH/weCFyYoImjFkasFiDMir3k/img.png" >}}

Burger's Equation

 \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial ^2u}{\partial x^2} 
 u_i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u_{i-1}^n) + \nu \frac{\Delta t}{\Delta x^2}(u_{i+1}^n - 2u_i^n + u_{i-1}^n) 
import numpy
import sympy
from sympy import init_printing
from matplotlib import pyplot
from sympy.utilities.lambdify import lambdify

%matplotlib inline
init_printing(use_latex=True)

x, nu, t = sympy.symbols('x nu t')
phi = (sympy.exp(-(x - 4 * t)**2 / (4 * nu * (t + 1))) +
       sympy.exp(-(x - 4 * t - 2 * sympy.pi)**2 / (4 * nu * (t + 1))))

phiprime = phi.diff(x)

u = -2 * nu * (phiprime / phi) + 4
ufunc = lambdify((t, x, nu), u)

###variable declarations
nx = 101
nt = 100
dx = 2 * numpy.pi / (nx - 1)
nu = .07
dt = dx * nu

x = numpy.linspace(0, 2 * numpy.pi, nx)
un = numpy.empty(nx)
t = 0

u = numpy.asarray([ufunc(t, x0, nu) for x0 in x])

for n in range(nt):
    un = u.copy()
    for i in range(1, nx-1):
        u[i] = un[i] - un[i] * dt / dx *(un[i] - un[i-1]) + nu * dt / dx**2 *\
                (un[i+1] - 2 * un[i] + un[i-1])
    u[0] = un[0] - un[0] * dt / dx * (un[0] - un[-2]) + nu * dt / dx**2 *\
                (un[1] - 2 * un[0] + un[-2])
    u[-1] = u[0]
        
u_analytical = numpy.asarray([ufunc(nt * dt, xi, nu) for xi in x])

pyplot.figure(figsize=(11, 7), dpi=100)
pyplot.plot(x,u, marker='o', lw=2, label='Computational')
pyplot.plot(x, u_analytical, label='Analytical')
pyplot.xlim([0, 2 * numpy.pi])
pyplot.ylim([0, 10])
pyplot.legend();

{{< figure src="https://blog.kakaocdn.net/dn/cE7P8B/btq9dF2BVpt/J6GbNhRT4dX1nfB2GPkurK/img.png" >}}

2-D Linear Convection

 \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x} + c\frac{\partial u}{\partial y} = 0 
 u_{i,j}^{n+1} = u_{i,j}^n-c \frac{\Delta t}{\Delta x}(u_{i,j}^n-u_{i-1,j}^n)-c \frac{\Delta t}{\Delta y}(u_{i,j}^n-u_{i,j-1}^n) 
from mpl_toolkits.mplot3d import Axes3D    ##New Library required for projected 3d plots

import numpy
from matplotlib import pyplot, cm
%matplotlib inline

###variable declarations
nx = 81
ny = 81
nt = 100
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .2
dt = sigma * dx

x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)

u = numpy.ones((ny, nx)) ##create a 1xn vector of 1's
un = numpy.ones((ny, nx)) ##

###Assign initial conditions

##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2 

###Plot Initial Condition
##the figsize parameter can be used to produce different sized images
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')                      
X, Y = numpy.meshgrid(x, y)                            
surf = ax.plot_surface(X, Y, u[:], cmap=cm.viridis)

{{< figure src="https://blog.kakaocdn.net/dn/MH3sO/btq9fmIfvXs/Tbral2sgJxUQHfJgs1hG61/img.png" >}}

2-D Convection

 \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = 0 
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot, cm
import numpy
%matplotlib inline

###variable declarations
nx = 101
ny = 101
nt = 80
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .2
dt = sigma * dx

x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)

u = numpy.ones((ny, nx)) ##create a 1xn vector of 1's
v = numpy.ones((ny, nx))
un = numpy.ones((ny, nx))
vn = numpy.ones((ny, nx))

###Assign initial conditions
##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1), int(.5 / dx):int(1 / dx + 1)] = 2
##set hat function I.C. : v(.5<=x<=1 && .5<=y<=1 ) is 2
v[int(.5 / dy):int(1 / dy + 1), int(.5 / dx):int(1 / dx + 1)] = 2
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y)

ax.plot_surface(X, Y, u, cmap=cm.viridis, rstride=2, cstride=2)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$');

{{< figure src="https://blog.kakaocdn.net/dn/bbiKmO/btq9hyAHR99/3KeBvxXPvCzXXYqrTlSj9k/img.png" >}}

2D Diffusion

 \frac{\partial u}{\partial t} = \nu \frac{\partial ^2 u}{\partial x^2} + \nu \frac{\partial ^2 u}{\partial y^2} 
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D ##library for 3d projection plots
%matplotlib inline
###variable declarations
nx = 31
ny = 31
nt = 17
nu = .05
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .25
dt = sigma * dx * dy / nu

x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)

u = numpy.ones((ny, nx))  # create a 1xn vector of 1's
un = numpy.ones((ny, nx))

###Assign initial conditions
# set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2  

###Run through nt timesteps
def diffuse(nt):
    u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2  
    
    for n in range(nt + 1): 
        un = u.copy()
        u[1:-1, 1:-1] = (un[1:-1,1:-1] + 
                        nu * dt / dx**2 * 
                        (un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
                        nu * dt / dy**2 * 
                        (un[2:,1: -1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1]))
        u[0, :] = 1
        u[-1, :] = 1
        u[:, 0] = 1
        u[:, -1] = 1

    
    fig = pyplot.figure()
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(X, Y, u[:], rstride=1, cstride=1, cmap=cm.viridis,
        linewidth=0, antialiased=True)
    ax.set_zlim(1, 2.5)
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$');

diffuse(14)

{{< figure src="https://blog.kakaocdn.net/dn/eLwQEW/btq9e0ysgnx/YVHruuNPlMa6pJODaIGJdK/img.png" >}}

Burgers' Equation in 2D

 \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \; \left(\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2}\right) 
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
###variable declarations
nx = 41
ny = 41
nt = 120
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .0009
nu = 0.01
dt = sigma * dx * dy / nu


x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)

u = numpy.ones((ny, nx))  # create a 1xn vector of 1's
v = numpy.ones((ny, nx))
un = numpy.ones((ny, nx)) 
vn = numpy.ones((ny, nx))
comb = numpy.ones((ny, nx))

###Assign initial conditions

##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2 
##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
v[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2
###(plot ICs)
for n in range(nt + 1): ##loop across number of time steps
    un = u.copy()
    vn = v.copy()

    u[1:-1, 1:-1] = (un[1:-1, 1:-1] -
                     dt / dx * un[1:-1, 1:-1] * 
                     (un[1:-1, 1:-1] - un[1:-1, 0:-2]) - 
                     dt / dy * vn[1:-1, 1:-1] * 
                     (un[1:-1, 1:-1] - un[0:-2, 1:-1]) + 
                     nu * dt / dx**2 * 
                     (un[1:-1,2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) + 
                     nu * dt / dy**2 * 
                     (un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1]))
    
    v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - 
                     dt / dx * un[1:-1, 1:-1] *
                     (vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
                     dt / dy * vn[1:-1, 1:-1] * 
                    (vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) + 
                     nu * dt / dx**2 * 
                     (vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
                     nu * dt / dy**2 *
                     (vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1]))
     
    u[0, :] = 1
    u[-1, :] = 1
    u[:, 0] = 1
    u[:, -1] = 1
    
    v[0, :] = 1
    v[-1, :] = 1
    v[:, 0] = 1
    v[:, -1] = 1
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y)
ax.plot_surface(X, Y, u, cmap=cm.viridis, rstride=1, cstride=1)
ax.plot_surface(X, Y, v, cmap=cm.viridis, rstride=1, cstride=1)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$');

{{< figure src="https://blog.kakaocdn.net/dn/PL2CD/btq9fcyC1VV/MC1B8I2YedaaCFr5Lr06KK/img.png" >}}

2D Laplace Equation

 \frac{\partial ^2 p}{\partial x^2} + \frac{\partial ^2 p}{\partial y^2} = 0 
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

def plot2D(x, y, p):
    fig = pyplot.figure(figsize=(11, 7), dpi=100)
    ax = fig.gca(projection='3d')
    X, Y = numpy.meshgrid(x, y)
    surf = ax.plot_surface(X, Y, p[:], rstride=1, cstride=1, cmap=cm.viridis,
            linewidth=0, antialiased=False)
    ax.set_xlim(0, 2)
    ax.set_ylim(0, 1)
    ax.view_init(30, 225)
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$')

def laplace2d(p, y, dx, dy, l1norm_target):
  l1norm = 1
  pn = numpy.empty_like(p)

  while l1norm > l1norm_target:
      pn = p.copy()
      p[1:-1, 1:-1] = ((dy**2 * (pn[1:-1, 2:] + pn[1:-1, 0:-2]) +
                        dx**2 * (pn[2:, 1:-1] + pn[0:-2, 1:-1])) /
                      (2 * (dx**2 + dy**2)))
          
      p[:, 0] = 0  # p = 0 @ x = 0
      p[:, -1] = y  # p = y @ x = 2
      p[0, :] = p[1, :]  # dp/dy = 0 @ y = 0
      p[-1, :] = p[-2, :]  # dp/dy = 0 @ y = 1
      l1norm = (numpy.sum(numpy.abs(p[:]) - numpy.abs(pn[:])) /
              numpy.sum(numpy.abs(pn[:])))
    
  return p
  
nx = 31
ny = 31
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)


##initial conditions
p = numpy.zeros((ny, nx))  # create a XxY vector of 0's


##plotting aids
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 1, ny)

##boundary conditions
p[:, 0] = 0  # p = 0 @ x = 0
p[:, -1] = y  # p = y @ x = 2
p[0, :] = p[1, :]  # dp/dy = 0 @ y = 0
p[-1, :] = p[-2, :]  # dp/dy = 0 @ y = 1

p = laplace2d(p, y, dx, dy, 1e-4)

plot2D(x, y, p)

{{< figure src="https://blog.kakaocdn.net/dn/bxvdGX/btq9goyjEC1/YkjgRDKkIZuAe2isKNsv60/img.png" >}}

2D Poisson Equation

 \frac{\partial ^2 p}{\partial x^2} + \frac{\partial ^2 p}{\partial y^2} = b 
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
# Parameters
nx = 50
ny = 50
nt  = 100
xmin = 0
xmax = 2
ymin = 0
ymax = 1

dx = (xmax - xmin) / (nx - 1)
dy = (ymax - ymin) / (ny - 1)

# Initialization
p  = numpy.zeros((ny, nx))
pd = numpy.zeros((ny, nx))
b  = numpy.zeros((ny, nx))
x  = numpy.linspace(xmin, xmax, nx)
y  = numpy.linspace(xmin, xmax, ny)

# Source
b[int(ny / 4), int(nx / 4)]  = 100
b[int(3 * ny / 4), int(3 * nx / 4)] = -100

for it in range(nt):

    pd = p.copy()

    p[1:-1,1:-1] = (((pd[1:-1, 2:] + pd[1:-1, :-2]) * dy**2 +
                    (pd[2:, 1:-1] + pd[:-2, 1:-1]) * dx**2 -
                    b[1:-1, 1:-1] * dx**2 * dy**2) / 
                    (2 * (dx**2 + dy**2)))

    p[0, :] = 0
    p[ny-1, :] = 0
    p[:, 0] = 0
    p[:, nx-1] = 0

def plot2D(x, y, p):
    fig = pyplot.figure(figsize=(11, 7), dpi=100)
    ax = fig.gca(projection='3d')
    X, Y = numpy.meshgrid(x, y)
    surf = ax.plot_surface(X, Y, p[:], rstride=1, cstride=1, cmap=cm.viridis,
            linewidth=0, antialiased=False)
    ax.view_init(30, 225)
    ax.set_xlabel('$x$')
    ax.set_ylabel('$y$')
    
plot2D(x, y, p)

Cavity Flow with NavierStokes

 \frac{\partial \vec{v}}{\partial t}+(\vec{v}\cdot\nabla)\vec{v}=-\frac{1}{\rho}\nabla p + \nu \nabla^2\vec{v} 
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
nx = 41
ny = 41
nt = 500
nit = 50
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
X, Y = numpy.meshgrid(x, y)

rho = 1
nu = .1
dt = .001

u = numpy.zeros((ny, nx))
v = numpy.zeros((ny, nx))
p = numpy.zeros((ny, nx)) 
b = numpy.zeros((ny, nx))

def build_up_b(b, rho, dt, u, v, dx, dy):
    
    b[1:-1, 1:-1] = (rho * (1 / dt * 
                    ((u[1:-1, 2:] - u[1:-1, 0:-2]) / 
                     (2 * dx) + (v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) -
                    ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx))**2 -
                      2 * ((u[2:, 1:-1] - u[0:-2, 1:-1]) / (2 * dy) *
                           (v[1:-1, 2:] - v[1:-1, 0:-2]) / (2 * dx))-
                          ((v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy))**2))

    return b

def pressure_poisson(p, dx, dy, b):
    pn = numpy.empty_like(p)
    pn = p.copy()
    
    for q in range(nit):
        pn = p.copy()
        p[1:-1, 1:-1] = (((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy**2 + 
                          (pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx**2) /
                          (2 * (dx**2 + dy**2)) -
                          dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * 
                          b[1:-1,1:-1])

        p[:, -1] = p[:, -2] # dp/dx = 0 at x = 2
        p[0, :] = p[1, :]   # dp/dy = 0 at y = 0
        p[:, 0] = p[:, 1]   # dp/dx = 0 at x = 0
        p[-1, :] = 0        # p = 0 at y = 2
        
    return p

def cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu):
    un = numpy.empty_like(u)
    vn = numpy.empty_like(v)
    b = numpy.zeros((ny, nx))
    
    for n in range(nt):
        un = u.copy()
        vn = v.copy()
        
        b = build_up_b(b, rho, dt, u, v, dx, dy)
        p = pressure_poisson(p, dx, dy, b)
        
        u[1:-1, 1:-1] = (un[1:-1, 1:-1]-
                         un[1:-1, 1:-1] * dt / dx *
                        (un[1:-1, 1:-1] - un[1:-1, 0:-2]) -
                         vn[1:-1, 1:-1] * dt / dy *
                        (un[1:-1, 1:-1] - un[0:-2, 1:-1]) -
                         dt / (2 * rho * dx) * (p[1:-1, 2:] - p[1:-1, 0:-2]) +
                         nu * (dt / dx**2 *
                        (un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
                         dt / dy**2 *
                        (un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])))

        v[1:-1,1:-1] = (vn[1:-1, 1:-1] -
                        un[1:-1, 1:-1] * dt / dx *
                       (vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
                        vn[1:-1, 1:-1] * dt / dy *
                       (vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) -
                        dt / (2 * rho * dy) * (p[2:, 1:-1] - p[0:-2, 1:-1]) +
                        nu * (dt / dx**2 *
                       (vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
                        dt / dy**2 *
                       (vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1])))

        u[0, :]  = 0
        u[:, 0]  = 0
        u[:, -1] = 0
        u[-1, :] = 1    # set velocity on cavity lid equal to 1
        v[0, :]  = 0
        v[-1, :] = 0
        v[:, 0]  = 0
        v[:, -1] = 0
        
        
    return u, v, p

u = numpy.zeros((ny, nx))
v = numpy.zeros((ny, nx))
p = numpy.zeros((ny, nx))
b = numpy.zeros((ny, nx))
nt = 100
u, v, p = cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu)
fig = pyplot.figure(figsize=(11,7), dpi=100)
# plotting the pressure field as a contour
pyplot.contourf(X, Y, p, alpha=0.5, cmap=cm.viridis)  
pyplot.colorbar()
# plotting the pressure field outlines
pyplot.contour(X, Y, p, cmap=cm.viridis)  
# plotting velocity field
pyplot.quiver(X[::2, ::2], Y[::2, ::2], u[::2, ::2], v[::2, ::2]) 
pyplot.xlabel('X')
pyplot.ylabel('Y');

{{< figure src="https://blog.kakaocdn.net/dn/VgtZK/btq9flvNFsA/4d03urU7VcLPRqzS5g40m1/img.png" >}}

u = numpy.zeros((ny, nx))
v = numpy.zeros((ny, nx))
p = numpy.zeros((ny, nx))
b = numpy.zeros((ny, nx))
nt = 700
u, v, p = cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu)
fig = pyplot.figure(figsize=(11, 7), dpi=100)
pyplot.contourf(X, Y, p, alpha=0.5, cmap=cm.viridis)
pyplot.colorbar()
pyplot.contour(X, Y, p, cmap=cm.viridis)
pyplot.quiver(X[::2, ::2], Y[::2, ::2], u[::2, ::2], v[::2, ::2])
pyplot.xlabel('X')
pyplot.ylabel('Y');

{{< figure src="https://blog.kakaocdn.net/dn/boYcRB/btq9fmasDP2/6w1UPPVU4mG7frDcjQtBIK/img.png" >}}

fig = pyplot.figure(figsize=(11, 7), dpi=100)
pyplot.contourf(X, Y, p, alpha=0.5, cmap=cm.viridis)
pyplot.colorbar()
pyplot.contour(X, Y, p, cmap=cm.viridis)
pyplot.streamplot(X, Y, u, v)
pyplot.xlabel('X')
pyplot.ylabel('Y');

{{< figure src="https://blog.kakaocdn.net/dn/0J2aJ/btq9e57PmFB/UqArsnX9hzJ84H4rW5AtB1/img.png" >}}

Channel Flow with NavierStokes

 \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right)+F 
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

def build_up_b(rho, dt, dx, dy, u, v):
    b = numpy.zeros_like(u)
    b[1:-1, 1:-1] = (rho * (1 / dt * ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx) +
                                      (v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) -
                            ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx))**2 -
                            2 * ((u[2:, 1:-1] - u[0:-2, 1:-1]) / (2 * dy) *
                                 (v[1:-1, 2:] - v[1:-1, 0:-2]) / (2 * dx))-
                            ((v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy))**2))
    
    # Periodic BC Pressure @ x = 2
    b[1:-1, -1] = (rho * (1 / dt * ((u[1:-1, 0] - u[1:-1,-2]) / (2 * dx) +
                                    (v[2:, -1] - v[0:-2, -1]) / (2 * dy)) -
                          ((u[1:-1, 0] - u[1:-1, -2]) / (2 * dx))**2 -
                          2 * ((u[2:, -1] - u[0:-2, -1]) / (2 * dy) *
                               (v[1:-1, 0] - v[1:-1, -2]) / (2 * dx)) -
                          ((v[2:, -1] - v[0:-2, -1]) / (2 * dy))**2))

    # Periodic BC Pressure @ x = 0
    b[1:-1, 0] = (rho * (1 / dt * ((u[1:-1, 1] - u[1:-1, -1]) / (2 * dx) +
                                   (v[2:, 0] - v[0:-2, 0]) / (2 * dy)) -
                         ((u[1:-1, 1] - u[1:-1, -1]) / (2 * dx))**2 -
                         2 * ((u[2:, 0] - u[0:-2, 0]) / (2 * dy) *
                              (v[1:-1, 1] - v[1:-1, -1]) / (2 * dx))-
                         ((v[2:, 0] - v[0:-2, 0]) / (2 * dy))**2))
    
    return b

def pressure_poisson_periodic(p, dx, dy):
    pn = numpy.empty_like(p)
    
    for q in range(nit):
        pn = p.copy()
        p[1:-1, 1:-1] = (((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy**2 +
                          (pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx**2) /
                         (2 * (dx**2 + dy**2)) -
                         dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * b[1:-1, 1:-1])

        # Periodic BC Pressure @ x = 2
        p[1:-1, -1] = (((pn[1:-1, 0] + pn[1:-1, -2])* dy**2 +
                        (pn[2:, -1] + pn[0:-2, -1]) * dx**2) /
                       (2 * (dx**2 + dy**2)) -
                       dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * b[1:-1, -1])

        # Periodic BC Pressure @ x = 0
        p[1:-1, 0] = (((pn[1:-1, 1] + pn[1:-1, -1])* dy**2 +
                       (pn[2:, 0] + pn[0:-2, 0]) * dx**2) /
                      (2 * (dx**2 + dy**2)) -
                      dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * b[1:-1, 0])
        
        # Wall boundary conditions, pressure
        p[-1, :] =p[-2, :]  # dp/dy = 0 at y = 2
        p[0, :] = p[1, :]  # dp/dy = 0 at y = 0
    
    return p

##variable declarations
nx = 41
ny = 41
nt = 10
nit = 50 
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
X, Y = numpy.meshgrid(x, y)


##physical variables
rho = 1
nu = .1
F = 1
dt = .01

#initial conditions
u = numpy.zeros((ny, nx))
un = numpy.zeros((ny, nx))

v = numpy.zeros((ny, nx))
vn = numpy.zeros((ny, nx))

p = numpy.ones((ny, nx))
pn = numpy.ones((ny, nx))

b = numpy.zeros((ny, nx))

udiff = 1
stepcount = 0

while udiff > .001:
    un = u.copy()
    vn = v.copy()

    b = build_up_b(rho, dt, dx, dy, u, v)
    p = pressure_poisson_periodic(p, dx, dy)

    u[1:-1, 1:-1] = (un[1:-1, 1:-1] -
                     un[1:-1, 1:-1] * dt / dx * 
                    (un[1:-1, 1:-1] - un[1:-1, 0:-2]) -
                     vn[1:-1, 1:-1] * dt / dy * 
                    (un[1:-1, 1:-1] - un[0:-2, 1:-1]) -
                     dt / (2 * rho * dx) * 
                    (p[1:-1, 2:] - p[1:-1, 0:-2]) +
                     nu * (dt / dx**2 * 
                    (un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
                     dt / dy**2 * 
                    (un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])) + 
                     F * dt)

    v[1:-1, 1:-1] = (vn[1:-1, 1:-1] -
                     un[1:-1, 1:-1] * dt / dx * 
                    (vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
                     vn[1:-1, 1:-1] * dt / dy * 
                    (vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) -
                     dt / (2 * rho * dy) * 
                    (p[2:, 1:-1] - p[0:-2, 1:-1]) +
                     nu * (dt / dx**2 *
                    (vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
                     dt / dy**2 * 
                    (vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1])))

    # Periodic BC u @ x = 2     
    u[1:-1, -1] = (un[1:-1, -1] - un[1:-1, -1] * dt / dx * 
                  (un[1:-1, -1] - un[1:-1, -2]) -
                   vn[1:-1, -1] * dt / dy * 
                  (un[1:-1, -1] - un[0:-2, -1]) -
                   dt / (2 * rho * dx) *
                  (p[1:-1, 0] - p[1:-1, -2]) + 
                   nu * (dt / dx**2 * 
                  (un[1:-1, 0] - 2 * un[1:-1,-1] + un[1:-1, -2]) +
                   dt / dy**2 * 
                  (un[2:, -1] - 2 * un[1:-1, -1] + un[0:-2, -1])) + F * dt)

    # Periodic BC u @ x = 0
    u[1:-1, 0] = (un[1:-1, 0] - un[1:-1, 0] * dt / dx *
                 (un[1:-1, 0] - un[1:-1, -1]) -
                  vn[1:-1, 0] * dt / dy * 
                 (un[1:-1, 0] - un[0:-2, 0]) - 
                  dt / (2 * rho * dx) * 
                 (p[1:-1, 1] - p[1:-1, -1]) + 
                  nu * (dt / dx**2 * 
                 (un[1:-1, 1] - 2 * un[1:-1, 0] + un[1:-1, -1]) +
                  dt / dy**2 *
                 (un[2:, 0] - 2 * un[1:-1, 0] + un[0:-2, 0])) + F * dt)

    # Periodic BC v @ x = 2
    v[1:-1, -1] = (vn[1:-1, -1] - un[1:-1, -1] * dt / dx *
                  (vn[1:-1, -1] - vn[1:-1, -2]) - 
                   vn[1:-1, -1] * dt / dy *
                  (vn[1:-1, -1] - vn[0:-2, -1]) -
                   dt / (2 * rho * dy) * 
                  (p[2:, -1] - p[0:-2, -1]) +
                   nu * (dt / dx**2 *
                  (vn[1:-1, 0] - 2 * vn[1:-1, -1] + vn[1:-1, -2]) +
                   dt / dy**2 *
                  (vn[2:, -1] - 2 * vn[1:-1, -1] + vn[0:-2, -1])))

    # Periodic BC v @ x = 0
    v[1:-1, 0] = (vn[1:-1, 0] - un[1:-1, 0] * dt / dx *
                 (vn[1:-1, 0] - vn[1:-1, -1]) -
                  vn[1:-1, 0] * dt / dy *
                 (vn[1:-1, 0] - vn[0:-2, 0]) -
                  dt / (2 * rho * dy) * 
                 (p[2:, 0] - p[0:-2, 0]) +
                  nu * (dt / dx**2 * 
                 (vn[1:-1, 1] - 2 * vn[1:-1, 0] + vn[1:-1, -1]) +
                  dt / dy**2 * 
                 (vn[2:, 0] - 2 * vn[1:-1, 0] + vn[0:-2, 0])))


    # Wall BC: u,v = 0 @ y = 0,2
    u[0, :] = 0
    u[-1, :] = 0
    v[0, :] = 0
    v[-1, :]=0
    
    udiff = (numpy.sum(u) - numpy.sum(un)) / numpy.sum(u)
    stepcount += 1

fig = pyplot.figure(figsize = (11,7), dpi=100)
pyplot.quiver(X[::3, ::3], Y[::3, ::3], u[::3, ::3], v[::3, ::3]);

{{< figure src="https://blog.kakaocdn.net/dn/du6hla/btq9fdKZP6o/ifKi67Tsr8khMmReNSHn5K/img.png" >}}

출처> CFD Python: 12 steps to Navier-Stokes :: Lorena A. Barba Group (lorenabarba.com)