blog/content/posts/2021-07-10-jeonsanyuceyeogh...

883 lines
31 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
date: 2021-07-10T08:23:47.000Z
description: ""
draft: false
title: CFD with Python (Navier-Stokes Equation)
slug: fd-with-python-navier-stokes-equation
---
## 1-D Linear Convection
1차원 선형 열전도 방정식은 가장 심플하면서도 가장 기초적인 방정식입니다.
$$ \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 $$
이 식을 오일러 방정식으로 변환하여 수치해석적으로 해를 구할 수 있도록 변환을 해줍니다.
$$ u*i^{n+1} = u_i^n - c \frac{\Delta t}{\Delta x}(u_i^n-u*{i-1}^n) $$
이제 이 오일러 방정식을 파이썬으로 구현해봅니다.
```python
import numpy
from matplotlib import pyplot
import time, sys
%matplotlib inline
nx = 41 # try changing this number from 41 to 81 and Run All ... what happens?
dx = 2 / (nx-1)
nt = 25 #nt is the number of timesteps we want to calculate
dt = .025 #dt is the amount of time each timestep covers (delta t)
c = 1 #assume wavespeed of c = 1
u = numpy.ones(nx) #numpy function ones()
u[int(.5 / dx):int(1 / dx + 1)] = 2 #setting u = 2 between 0.5 and 1 as per our I.C.s
un = numpy.ones(nx) #initialize a temporary array
for n in range(nt): #loop for values of n from 0 to nt, so it will run nt times
un = u.copy() ##copy the existing values of u into un
for i in range(1, nx): ## you can try commenting this line and...
#for i in range(nx): ## ... uncommenting this line and see what happens!
u[i] = un[i] - c * dt / dx * (un[i] - un[i-1])
pyplot.plot(numpy.linspace(0, 2, nx), u);
```
{{< figure src="https://blog.kakaocdn.net/dn/ZbM8j/btq9fWovXzY/D1HOqkCqgkw9YLDpyMFxb1/img.png" >}}
## 1-D Convection Equation (Non-Linear)
$$ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 $$
$$ u*i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u*{i-1}^n) $$
```python
import numpy # we're importing numpy
from matplotlib import pyplot # and our 2D plotting library
%matplotlib inline
nx = 41
dx = 2 / (nx - 1)
nt = 20 #nt is the number of timesteps we want to calculate
dt = .025 #dt is the amount of time each timestep covers (delta t)
u = numpy.ones(nx) #as before, we initialize u with every value equal to 1.
u[int(.5 / dx) : int(1 / dx + 1)] = 2 #then set u = 2 between 0.5 and 1 as per our I.C.s
un = numpy.ones(nx) #initialize our placeholder array un, to hold the time-stepped solution
for n in range(nt): #iterate through time
un = u.copy() ##copy the existing values of u into un
for i in range(1, nx): ##now we'll iterate through the u array
###This is the line from Step 1, copied exactly. Edit it for our new equation.
###then uncomment it and run the cell to evaluate Step 2
###u[i] = un[i] - c * dt / dx * (un[i] - un[i-1])
pyplot.plot(numpy.linspace(0, 2, nx), u) ##Plot the results
```
## 1-D Diffusion Equation
$$ \frac{\partial u}{\partial t}= \nu \frac{\partial^2 u}{\partial x^2} $$
$$ u*{i}^{n+1}=u*{i}^{n}+\frac{\nu\Delta t}{\Delta x^2}(u*{i+1}^{n}-2u*{i}^{n}+u_{i-1}^{n}) $$
```python
import numpy #loading our favorite library
from matplotlib import pyplot #and the useful plotting library
%matplotlib inline
nx = 41
dx = 2 / (nx - 1)
nt = 20 #the number of timesteps we want to calculate
nu = 0.3 #the value of viscosity
sigma = .2 #sigma is a parameter, we'll learn more about it later
dt = sigma * dx**2 / nu #dt is defined using sigma ... more later!
u = numpy.ones(nx) #a numpy array with nx elements all equal to 1.
u[int(.5 / dx):int(1 / dx + 1)] = 2 #setting u = 2 between 0.5 and 1 as per our I.C.s
un = numpy.ones(nx) #our placeholder array, un, to advance the solution in time
for n in range(nt): #iterate through time
un = u.copy() ##copy the existing values of u into un
for i in range(1, nx - 1):
u[i] = un[i] + nu * dt / dx**2 * (un[i+1] - 2 * un[i] + un[i-1])
pyplot.plot(numpy.linspace(0, 2, nx), u);
```
{{< figure src="https://blog.kakaocdn.net/dn/oaKgN/btq9iA57vBH/weCFyYoImjFkasFiDMir3k/img.png" >}}
## Burger's Equation
$$ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial ^2u}{\partial x^2} $$
$$ u*i^{n+1} = u_i^n - u_i^n \frac{\Delta t}{\Delta x} (u_i^n - u*{i-1}^n) + \nu \frac{\Delta t}{\Delta x^2}(u*{i+1}^n - 2u_i^n + u*{i-1}^n) $$
```python
import numpy
import sympy
from sympy import init_printing
from matplotlib import pyplot
from sympy.utilities.lambdify import lambdify
%matplotlib inline
init_printing(use_latex=True)
x, nu, t = sympy.symbols('x nu t')
phi = (sympy.exp(-(x - 4 * t)**2 / (4 * nu * (t + 1))) +
sympy.exp(-(x - 4 * t - 2 * sympy.pi)**2 / (4 * nu * (t + 1))))
phiprime = phi.diff(x)
u = -2 * nu * (phiprime / phi) + 4
ufunc = lambdify((t, x, nu), u)
###variable declarations
nx = 101
nt = 100
dx = 2 * numpy.pi / (nx - 1)
nu = .07
dt = dx * nu
x = numpy.linspace(0, 2 * numpy.pi, nx)
un = numpy.empty(nx)
t = 0
u = numpy.asarray([ufunc(t, x0, nu) for x0 in x])
for n in range(nt):
un = u.copy()
for i in range(1, nx-1):
u[i] = un[i] - un[i] * dt / dx *(un[i] - un[i-1]) + nu * dt / dx**2 *\
(un[i+1] - 2 * un[i] + un[i-1])
u[0] = un[0] - un[0] * dt / dx * (un[0] - un[-2]) + nu * dt / dx**2 *\
(un[1] - 2 * un[0] + un[-2])
u[-1] = u[0]
u_analytical = numpy.asarray([ufunc(nt * dt, xi, nu) for xi in x])
pyplot.figure(figsize=(11, 7), dpi=100)
pyplot.plot(x,u, marker='o', lw=2, label='Computational')
pyplot.plot(x, u_analytical, label='Analytical')
pyplot.xlim([0, 2 * numpy.pi])
pyplot.ylim([0, 10])
pyplot.legend();
```
{{< figure src="https://blog.kakaocdn.net/dn/cE7P8B/btq9dF2BVpt/J6GbNhRT4dX1nfB2GPkurK/img.png" >}}
## 2-D Linear Convection
$$ \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x} + c\frac{\partial u}{\partial y} = 0 $$
$$ u*{i,j}^{n+1} = u*{i,j}^n-c \frac{\Delta t}{\Delta x}(u*{i,j}^n-u*{i-1,j}^n)-c \frac{\Delta t}{\Delta y}(u*{i,j}^n-u*{i,j-1}^n) $$
```python
from mpl_toolkits.mplot3d import Axes3D ##New Library required for projected 3d plots
import numpy
from matplotlib import pyplot, cm
%matplotlib inline
###variable declarations
nx = 81
ny = 81
nt = 100
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .2
dt = sigma * dx
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
u = numpy.ones((ny, nx)) ##create a 1xn vector of 1's
un = numpy.ones((ny, nx)) ##
###Assign initial conditions
##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2
###Plot Initial Condition
##the figsize parameter can be used to produce different sized images
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y)
surf = ax.plot_surface(X, Y, u[:], cmap=cm.viridis)
```
{{< figure src="https://blog.kakaocdn.net/dn/MH3sO/btq9fmIfvXs/Tbral2sgJxUQHfJgs1hG61/img.png" >}}
## 2-D Convection
$$ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = 0 $$$$ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = 0 $$$$ u*{i,j}^{n+1} = u*{i,j}^n - u*{i,j} \frac{\Delta t}{\Delta x} (u*{i,j}^n-u*{i-1,j}^n) - v*{i,j}^n \frac{\Delta t}{\Delta y} (u*{i,j}^n-u*{i,j-1}^n) $$$$ v*{i,j}^{n+1} = v*{i,j}^n - u*{i,j} \frac{\Delta t}{\Delta x} (v*{i,j}^n-v*{i-1,j}^n) - v*{i,j}^n \frac{\Delta t}{\Delta y} (v*{i,j}^n-v*{i,j-1}^n) $$
```python
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot, cm
import numpy
%matplotlib inline
###variable declarations
nx = 101
ny = 101
nt = 80
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .2
dt = sigma * dx
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
u = numpy.ones((ny, nx)) ##create a 1xn vector of 1's
v = numpy.ones((ny, nx))
un = numpy.ones((ny, nx))
vn = numpy.ones((ny, nx))
###Assign initial conditions
##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1), int(.5 / dx):int(1 / dx + 1)] = 2
##set hat function I.C. : v(.5<=x<=1 && .5<=y<=1 ) is 2
v[int(.5 / dy):int(1 / dy + 1), int(.5 / dx):int(1 / dx + 1)] = 2
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y)
ax.plot_surface(X, Y, u, cmap=cm.viridis, rstride=2, cstride=2)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$');
```
{{< figure src="https://blog.kakaocdn.net/dn/bbiKmO/btq9hyAHR99/3KeBvxXPvCzXXYqrTlSj9k/img.png" >}}
## 2D Diffusion
$$ \frac{\partial u}{\partial t} = \nu \frac{\partial ^2 u}{\partial x^2} + \nu \frac{\partial ^2 u}{\partial y^2} $$$$ \begin{split}u*{i,j}^{n+1} = u*{i,j}^n &+ \frac{\nu \Delta t}{\Delta x^2}(u*{i+1,j}^n - 2 u*{i,j}^n + u*{i-1,j}^n) \&+ \frac{\nu \Delta t}{\Delta y^2}(u*{i,j+1}^n-2 u*{i,j}^n + u*{i,j-1}^n)\end{split} $$
```python
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D ##library for 3d projection plots
%matplotlib inline
###variable declarations
nx = 31
ny = 31
nt = 17
nu = .05
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .25
dt = sigma * dx * dy / nu
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
u = numpy.ones((ny, nx)) # create a 1xn vector of 1's
un = numpy.ones((ny, nx))
###Assign initial conditions
# set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2
###Run through nt timesteps
def diffuse(nt):
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2
for n in range(nt + 1):
un = u.copy()
u[1:-1, 1:-1] = (un[1:-1,1:-1] +
nu * dt / dx**2 *
(un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
nu * dt / dy**2 *
(un[2:,1: -1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1]))
u[0, :] = 1
u[-1, :] = 1
u[:, 0] = 1
u[:, -1] = 1
fig = pyplot.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, u[:], rstride=1, cstride=1, cmap=cm.viridis,
linewidth=0, antialiased=True)
ax.set_zlim(1, 2.5)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$');
diffuse(14)
```
{{< figure src="https://blog.kakaocdn.net/dn/eLwQEW/btq9e0ysgnx/YVHruuNPlMa6pJODaIGJdK/img.png" >}}
## Burgers' Equation in 2D
$$ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu ; \left(\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2}\right) $$$$ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = \nu ; \left(\frac{\partial ^2 v}{\partial x^2} + \frac{\partial ^2 v}{\partial y^2}\right) $$$$ \begin{split}v*{i,j}^{n+1} = & v*{i,j}^n - \frac{\Delta t}{\Delta x} u*{i,j}^n (v*{i,j}^n - v*{i-1,j}^n) - \frac{\Delta t}{\Delta y} v*{i,j}^n (v*{i,j}^n - v*{i,j-1}^n) \&+ \frac{\nu \Delta t}{\Delta x^2}(v*{i+1,j}^n-2v*{i,j}^n+v*{i-1,j}^n) + \frac{\nu \Delta t}{\Delta y^2} (v*{i,j+1}^n - 2v*{i,j}^n + v*{i,j-1}^n)\end{split} $$
```python
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
###variable declarations
nx = 41
ny = 41
nt = 120
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
sigma = .0009
nu = 0.01
dt = sigma * dx * dy / nu
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
u = numpy.ones((ny, nx)) # create a 1xn vector of 1's
v = numpy.ones((ny, nx))
un = numpy.ones((ny, nx))
vn = numpy.ones((ny, nx))
comb = numpy.ones((ny, nx))
###Assign initial conditions
##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
u[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2
##set hat function I.C. : u(.5<=x<=1 && .5<=y<=1 ) is 2
v[int(.5 / dy):int(1 / dy + 1),int(.5 / dx):int(1 / dx + 1)] = 2
###(plot ICs)
for n in range(nt + 1): ##loop across number of time steps
un = u.copy()
vn = v.copy()
u[1:-1, 1:-1] = (un[1:-1, 1:-1] -
dt / dx * un[1:-1, 1:-1] *
(un[1:-1, 1:-1] - un[1:-1, 0:-2]) -
dt / dy * vn[1:-1, 1:-1] *
(un[1:-1, 1:-1] - un[0:-2, 1:-1]) +
nu * dt / dx**2 *
(un[1:-1,2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
nu * dt / dy**2 *
(un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1]))
v[1:-1, 1:-1] = (vn[1:-1, 1:-1] -
dt / dx * un[1:-1, 1:-1] *
(vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
dt / dy * vn[1:-1, 1:-1] *
(vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) +
nu * dt / dx**2 *
(vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
nu * dt / dy**2 *
(vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1]))
u[0, :] = 1
u[-1, :] = 1
u[:, 0] = 1
u[:, -1] = 1
v[0, :] = 1
v[-1, :] = 1
v[:, 0] = 1
v[:, -1] = 1
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y)
ax.plot_surface(X, Y, u, cmap=cm.viridis, rstride=1, cstride=1)
ax.plot_surface(X, Y, v, cmap=cm.viridis, rstride=1, cstride=1)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$');
```
{{< figure src="https://blog.kakaocdn.net/dn/PL2CD/btq9fcyC1VV/MC1B8I2YedaaCFr5Lr06KK/img.png" >}}
## 2D Laplace Equation
$$ \frac{\partial ^2 p}{\partial x^2} + \frac{\partial ^2 p}{\partial y^2} = 0 $$$$ p*{i,j}^n = \frac{\Delta y^2(p*{i+1,j}^n+p*{i-1,j}^n)+\Delta x^2(p*{i,j+1}^n + p_{i,j-1}^n)}{2(\Delta x^2 + \Delta y^2)} $$
```python
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
def plot2D(x, y, p):
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y)
surf = ax.plot_surface(X, Y, p[:], rstride=1, cstride=1, cmap=cm.viridis,
linewidth=0, antialiased=False)
ax.set_xlim(0, 2)
ax.set_ylim(0, 1)
ax.view_init(30, 225)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
def laplace2d(p, y, dx, dy, l1norm_target):
l1norm = 1
pn = numpy.empty_like(p)
while l1norm > l1norm_target:
pn = p.copy()
p[1:-1, 1:-1] = ((dy**2 * (pn[1:-1, 2:] + pn[1:-1, 0:-2]) +
dx**2 * (pn[2:, 1:-1] + pn[0:-2, 1:-1])) /
(2 * (dx**2 + dy**2)))
p[:, 0] = 0 # p = 0 @ x = 0
p[:, -1] = y # p = y @ x = 2
p[0, :] = p[1, :] # dp/dy = 0 @ y = 0
p[-1, :] = p[-2, :] # dp/dy = 0 @ y = 1
l1norm = (numpy.sum(numpy.abs(p[:]) - numpy.abs(pn[:])) /
numpy.sum(numpy.abs(pn[:])))
return p
nx = 31
ny = 31
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
##initial conditions
p = numpy.zeros((ny, nx)) # create a XxY vector of 0's
##plotting aids
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 1, ny)
##boundary conditions
p[:, 0] = 0 # p = 0 @ x = 0
p[:, -1] = y # p = y @ x = 2
p[0, :] = p[1, :] # dp/dy = 0 @ y = 0
p[-1, :] = p[-2, :] # dp/dy = 0 @ y = 1
p = laplace2d(p, y, dx, dy, 1e-4)
plot2D(x, y, p)
```
{{< figure src="https://blog.kakaocdn.net/dn/bxvdGX/btq9goyjEC1/YkjgRDKkIZuAe2isKNsv60/img.png" >}}
## 2D Poisson Equation
$$ \frac{\partial ^2 p}{\partial x^2} + \frac{\partial ^2 p}{\partial y^2} = b $$$$ p*{i,j}^{n}=\frac{(p*{i+1,j}^{n}+p*{i-1,j}^{n})\Delta y^2+(p*{i,j+1}^{n}+p*{i,j-1}^{n})\Delta x^2-b*{i,j}^{n}\Delta x^2\Delta y^2}{2(\Delta x^2+\Delta y^2)} $$
```python
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
# Parameters
nx = 50
ny = 50
nt = 100
xmin = 0
xmax = 2
ymin = 0
ymax = 1
dx = (xmax - xmin) / (nx - 1)
dy = (ymax - ymin) / (ny - 1)
# Initialization
p = numpy.zeros((ny, nx))
pd = numpy.zeros((ny, nx))
b = numpy.zeros((ny, nx))
x = numpy.linspace(xmin, xmax, nx)
y = numpy.linspace(xmin, xmax, ny)
# Source
b[int(ny / 4), int(nx / 4)] = 100
b[int(3 * ny / 4), int(3 * nx / 4)] = -100
for it in range(nt):
pd = p.copy()
p[1:-1,1:-1] = (((pd[1:-1, 2:] + pd[1:-1, :-2]) * dy**2 +
(pd[2:, 1:-1] + pd[:-2, 1:-1]) * dx**2 -
b[1:-1, 1:-1] * dx**2 * dy**2) /
(2 * (dx**2 + dy**2)))
p[0, :] = 0
p[ny-1, :] = 0
p[:, 0] = 0
p[:, nx-1] = 0
def plot2D(x, y, p):
fig = pyplot.figure(figsize=(11, 7), dpi=100)
ax = fig.gca(projection='3d')
X, Y = numpy.meshgrid(x, y)
surf = ax.plot_surface(X, Y, p[:], rstride=1, cstride=1, cmap=cm.viridis,
linewidth=0, antialiased=False)
ax.view_init(30, 225)
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
plot2D(x, y, p)
```
## Cavity Flow with NavierStokes
$$ \frac{\partial \vec{v}}{\partial t}+(\vec{v}\cdot\nabla)\vec{v}=-\frac{1}{\rho}\nabla p + \nu \nabla^2\vec{v} $$$$ \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu \left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2} \right) $$$$ \frac{\partial^2 p}{\partial x^2}+\frac{\partial^2 p}{\partial y^2} = -\rho\left(\frac{\partial u}{\partial x}\frac{\partial u}{\partial x}+2\frac{\partial u}{\partial y}\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}\frac{\partial v}{\partial y} \right) $$$$ \begin{split}p*{i,j}^{n} = & \frac{\left(p*{i+1,j}^{n}+p*{i-1,j}^{n}\right) \Delta y^2 + \left(p*{i,j+1}^{n}+p*{i,j-1}^{n}\right) \Delta x^2}{2\left(\Delta x^2+\Delta y^2\right)} \& -\frac{\rho\Delta x^2\Delta y^2}{2\left(\Delta x^2+\Delta y^2\right)} \& \times \left[\frac{1}{\Delta t}\left(\frac{u*{i+1,j}-u*{i-1,j}}{2\Delta x}+\frac{v*{i,j+1}-v*{i,j-1}}{2\Delta y}\right)-\frac{u*{i+1,j}-u*{i-1,j}}{2\Delta x}\frac{u*{i+1,j}-u*{i-1,j}}{2\Delta x} -2\frac{u*{i,j+1}-u*{i,j-1}}{2\Delta y}\frac{v*{i+1,j}-v*{i-1,j}}{2\Delta x}-\frac{v*{i,j+1}-v*{i,j-1}}{2\Delta y}\frac{v*{i,j+1}-v_{i,j-1}}{2\Delta y}\right]\end{split} $$
```python
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
nx = 41
ny = 41
nt = 500
nit = 50
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
X, Y = numpy.meshgrid(x, y)
rho = 1
nu = .1
dt = .001
u = numpy.zeros((ny, nx))
v = numpy.zeros((ny, nx))
p = numpy.zeros((ny, nx))
b = numpy.zeros((ny, nx))
def build_up_b(b, rho, dt, u, v, dx, dy):
b[1:-1, 1:-1] = (rho * (1 / dt *
((u[1:-1, 2:] - u[1:-1, 0:-2]) /
(2 * dx) + (v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) -
((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx))**2 -
2 * ((u[2:, 1:-1] - u[0:-2, 1:-1]) / (2 * dy) *
(v[1:-1, 2:] - v[1:-1, 0:-2]) / (2 * dx))-
((v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy))**2))
return b
def pressure_poisson(p, dx, dy, b):
pn = numpy.empty_like(p)
pn = p.copy()
for q in range(nit):
pn = p.copy()
p[1:-1, 1:-1] = (((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy**2 +
(pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx**2) /
(2 * (dx**2 + dy**2)) -
dx**2 * dy**2 / (2 * (dx**2 + dy**2)) *
b[1:-1,1:-1])
p[:, -1] = p[:, -2] # dp/dx = 0 at x = 2
p[0, :] = p[1, :] # dp/dy = 0 at y = 0
p[:, 0] = p[:, 1] # dp/dx = 0 at x = 0
p[-1, :] = 0 # p = 0 at y = 2
return p
def cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu):
un = numpy.empty_like(u)
vn = numpy.empty_like(v)
b = numpy.zeros((ny, nx))
for n in range(nt):
un = u.copy()
vn = v.copy()
b = build_up_b(b, rho, dt, u, v, dx, dy)
p = pressure_poisson(p, dx, dy, b)
u[1:-1, 1:-1] = (un[1:-1, 1:-1]-
un[1:-1, 1:-1] * dt / dx *
(un[1:-1, 1:-1] - un[1:-1, 0:-2]) -
vn[1:-1, 1:-1] * dt / dy *
(un[1:-1, 1:-1] - un[0:-2, 1:-1]) -
dt / (2 * rho * dx) * (p[1:-1, 2:] - p[1:-1, 0:-2]) +
nu * (dt / dx**2 *
(un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
dt / dy**2 *
(un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])))
v[1:-1,1:-1] = (vn[1:-1, 1:-1] -
un[1:-1, 1:-1] * dt / dx *
(vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
vn[1:-1, 1:-1] * dt / dy *
(vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) -
dt / (2 * rho * dy) * (p[2:, 1:-1] - p[0:-2, 1:-1]) +
nu * (dt / dx**2 *
(vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
dt / dy**2 *
(vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1])))
u[0, :] = 0
u[:, 0] = 0
u[:, -1] = 0
u[-1, :] = 1 # set velocity on cavity lid equal to 1
v[0, :] = 0
v[-1, :] = 0
v[:, 0] = 0
v[:, -1] = 0
return u, v, p
u = numpy.zeros((ny, nx))
v = numpy.zeros((ny, nx))
p = numpy.zeros((ny, nx))
b = numpy.zeros((ny, nx))
nt = 100
u, v, p = cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu)
fig = pyplot.figure(figsize=(11,7), dpi=100)
# plotting the pressure field as a contour
pyplot.contourf(X, Y, p, alpha=0.5, cmap=cm.viridis)
pyplot.colorbar()
# plotting the pressure field outlines
pyplot.contour(X, Y, p, cmap=cm.viridis)
# plotting velocity field
pyplot.quiver(X[::2, ::2], Y[::2, ::2], u[::2, ::2], v[::2, ::2])
pyplot.xlabel('X')
pyplot.ylabel('Y');
```
{{< figure src="https://blog.kakaocdn.net/dn/VgtZK/btq9flvNFsA/4d03urU7VcLPRqzS5g40m1/img.png" >}}
```python
u = numpy.zeros((ny, nx))
v = numpy.zeros((ny, nx))
p = numpy.zeros((ny, nx))
b = numpy.zeros((ny, nx))
nt = 700
u, v, p = cavity_flow(nt, u, v, dt, dx, dy, p, rho, nu)
fig = pyplot.figure(figsize=(11, 7), dpi=100)
pyplot.contourf(X, Y, p, alpha=0.5, cmap=cm.viridis)
pyplot.colorbar()
pyplot.contour(X, Y, p, cmap=cm.viridis)
pyplot.quiver(X[::2, ::2], Y[::2, ::2], u[::2, ::2], v[::2, ::2])
pyplot.xlabel('X')
pyplot.ylabel('Y');
```
{{< figure src="https://blog.kakaocdn.net/dn/boYcRB/btq9fmasDP2/6w1UPPVU4mG7frDcjQtBIK/img.png" >}}
```python
fig = pyplot.figure(figsize=(11, 7), dpi=100)
pyplot.contourf(X, Y, p, alpha=0.5, cmap=cm.viridis)
pyplot.colorbar()
pyplot.contour(X, Y, p, cmap=cm.viridis)
pyplot.streamplot(X, Y, u, v)
pyplot.xlabel('X')
pyplot.ylabel('Y');
```
{{< figure src="https://blog.kakaocdn.net/dn/0J2aJ/btq9e57PmFB/UqArsnX9hzJ84H4rW5AtB1/img.png" >}}
## Channel Flow with NavierStokes
$$ \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right)+F $$$$ \frac{\partial^2 p}{\partial x^2}+\frac{\partial^2 p}{\partial y^2}=-\rho\left(\frac{\partial u}{\partial x}\frac{\partial u}{\partial x}+2\frac{\partial u}{\partial y}\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}\frac{\partial v}{\partial y}\right) $$$$ \begin{split}p*{i,j}^{n} = & \frac{\left(p*{i+1,j}^{n}+p*{i-1,j}^{n}\right) \Delta y^2 + \left(p*{i,j+1}^{n}+p*{i,j-1}^{n}\right) \Delta x^2}{2(\Delta x^2+\Delta y^2)} \& -\frac{\rho\Delta x^2\Delta y^2}{2\left(\Delta x^2+\Delta y^2\right)} \& \times \left[\frac{1}{\Delta t} \left(\frac{u*{i+1,j}-u*{i-1,j}}{2\Delta x} + \frac{v*{i,j+1}-v*{i,j-1}}{2\Delta y}\right) - \frac{u*{i+1,j}-u*{i-1,j}}{2\Delta x}\frac{u*{i+1,j}-u*{i-1,j}}{2\Delta x} - 2\frac{u*{i,j+1}-u*{i,j-1}}{2\Delta y}\frac{v*{i+1,j}-v*{i-1,j}}{2\Delta x} - \frac{v*{i,j+1}-v*{i,j-1}}{2\Delta y}\frac{v*{i,j+1}-v_{i,j-1}}{2\Delta y}\right]\end{split} $$
```python
import numpy
from matplotlib import pyplot, cm
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
def build_up_b(rho, dt, dx, dy, u, v):
b = numpy.zeros_like(u)
b[1:-1, 1:-1] = (rho * (1 / dt * ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx) +
(v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) -
((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx))**2 -
2 * ((u[2:, 1:-1] - u[0:-2, 1:-1]) / (2 * dy) *
(v[1:-1, 2:] - v[1:-1, 0:-2]) / (2 * dx))-
((v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy))**2))
# Periodic BC Pressure @ x = 2
b[1:-1, -1] = (rho * (1 / dt * ((u[1:-1, 0] - u[1:-1,-2]) / (2 * dx) +
(v[2:, -1] - v[0:-2, -1]) / (2 * dy)) -
((u[1:-1, 0] - u[1:-1, -2]) / (2 * dx))**2 -
2 * ((u[2:, -1] - u[0:-2, -1]) / (2 * dy) *
(v[1:-1, 0] - v[1:-1, -2]) / (2 * dx)) -
((v[2:, -1] - v[0:-2, -1]) / (2 * dy))**2))
# Periodic BC Pressure @ x = 0
b[1:-1, 0] = (rho * (1 / dt * ((u[1:-1, 1] - u[1:-1, -1]) / (2 * dx) +
(v[2:, 0] - v[0:-2, 0]) / (2 * dy)) -
((u[1:-1, 1] - u[1:-1, -1]) / (2 * dx))**2 -
2 * ((u[2:, 0] - u[0:-2, 0]) / (2 * dy) *
(v[1:-1, 1] - v[1:-1, -1]) / (2 * dx))-
((v[2:, 0] - v[0:-2, 0]) / (2 * dy))**2))
return b
def pressure_poisson_periodic(p, dx, dy):
pn = numpy.empty_like(p)
for q in range(nit):
pn = p.copy()
p[1:-1, 1:-1] = (((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy**2 +
(pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx**2) /
(2 * (dx**2 + dy**2)) -
dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * b[1:-1, 1:-1])
# Periodic BC Pressure @ x = 2
p[1:-1, -1] = (((pn[1:-1, 0] + pn[1:-1, -2])* dy**2 +
(pn[2:, -1] + pn[0:-2, -1]) * dx**2) /
(2 * (dx**2 + dy**2)) -
dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * b[1:-1, -1])
# Periodic BC Pressure @ x = 0
p[1:-1, 0] = (((pn[1:-1, 1] + pn[1:-1, -1])* dy**2 +
(pn[2:, 0] + pn[0:-2, 0]) * dx**2) /
(2 * (dx**2 + dy**2)) -
dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * b[1:-1, 0])
# Wall boundary conditions, pressure
p[-1, :] =p[-2, :] # dp/dy = 0 at y = 2
p[0, :] = p[1, :] # dp/dy = 0 at y = 0
return p
##variable declarations
nx = 41
ny = 41
nt = 10
nit = 50
c = 1
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
x = numpy.linspace(0, 2, nx)
y = numpy.linspace(0, 2, ny)
X, Y = numpy.meshgrid(x, y)
##physical variables
rho = 1
nu = .1
F = 1
dt = .01
#initial conditions
u = numpy.zeros((ny, nx))
un = numpy.zeros((ny, nx))
v = numpy.zeros((ny, nx))
vn = numpy.zeros((ny, nx))
p = numpy.ones((ny, nx))
pn = numpy.ones((ny, nx))
b = numpy.zeros((ny, nx))
udiff = 1
stepcount = 0
while udiff > .001:
un = u.copy()
vn = v.copy()
b = build_up_b(rho, dt, dx, dy, u, v)
p = pressure_poisson_periodic(p, dx, dy)
u[1:-1, 1:-1] = (un[1:-1, 1:-1] -
un[1:-1, 1:-1] * dt / dx *
(un[1:-1, 1:-1] - un[1:-1, 0:-2]) -
vn[1:-1, 1:-1] * dt / dy *
(un[1:-1, 1:-1] - un[0:-2, 1:-1]) -
dt / (2 * rho * dx) *
(p[1:-1, 2:] - p[1:-1, 0:-2]) +
nu * (dt / dx**2 *
(un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) +
dt / dy**2 *
(un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])) +
F * dt)
v[1:-1, 1:-1] = (vn[1:-1, 1:-1] -
un[1:-1, 1:-1] * dt / dx *
(vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) -
vn[1:-1, 1:-1] * dt / dy *
(vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) -
dt / (2 * rho * dy) *
(p[2:, 1:-1] - p[0:-2, 1:-1]) +
nu * (dt / dx**2 *
(vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) +
dt / dy**2 *
(vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1])))
# Periodic BC u @ x = 2
u[1:-1, -1] = (un[1:-1, -1] - un[1:-1, -1] * dt / dx *
(un[1:-1, -1] - un[1:-1, -2]) -
vn[1:-1, -1] * dt / dy *
(un[1:-1, -1] - un[0:-2, -1]) -
dt / (2 * rho * dx) *
(p[1:-1, 0] - p[1:-1, -2]) +
nu * (dt / dx**2 *
(un[1:-1, 0] - 2 * un[1:-1,-1] + un[1:-1, -2]) +
dt / dy**2 *
(un[2:, -1] - 2 * un[1:-1, -1] + un[0:-2, -1])) + F * dt)
# Periodic BC u @ x = 0
u[1:-1, 0] = (un[1:-1, 0] - un[1:-1, 0] * dt / dx *
(un[1:-1, 0] - un[1:-1, -1]) -
vn[1:-1, 0] * dt / dy *
(un[1:-1, 0] - un[0:-2, 0]) -
dt / (2 * rho * dx) *
(p[1:-1, 1] - p[1:-1, -1]) +
nu * (dt / dx**2 *
(un[1:-1, 1] - 2 * un[1:-1, 0] + un[1:-1, -1]) +
dt / dy**2 *
(un[2:, 0] - 2 * un[1:-1, 0] + un[0:-2, 0])) + F * dt)
# Periodic BC v @ x = 2
v[1:-1, -1] = (vn[1:-1, -1] - un[1:-1, -1] * dt / dx *
(vn[1:-1, -1] - vn[1:-1, -2]) -
vn[1:-1, -1] * dt / dy *
(vn[1:-1, -1] - vn[0:-2, -1]) -
dt / (2 * rho * dy) *
(p[2:, -1] - p[0:-2, -1]) +
nu * (dt / dx**2 *
(vn[1:-1, 0] - 2 * vn[1:-1, -1] + vn[1:-1, -2]) +
dt / dy**2 *
(vn[2:, -1] - 2 * vn[1:-1, -1] + vn[0:-2, -1])))
# Periodic BC v @ x = 0
v[1:-1, 0] = (vn[1:-1, 0] - un[1:-1, 0] * dt / dx *
(vn[1:-1, 0] - vn[1:-1, -1]) -
vn[1:-1, 0] * dt / dy *
(vn[1:-1, 0] - vn[0:-2, 0]) -
dt / (2 * rho * dy) *
(p[2:, 0] - p[0:-2, 0]) +
nu * (dt / dx**2 *
(vn[1:-1, 1] - 2 * vn[1:-1, 0] + vn[1:-1, -1]) +
dt / dy**2 *
(vn[2:, 0] - 2 * vn[1:-1, 0] + vn[0:-2, 0])))
# Wall BC: u,v = 0 @ y = 0,2
u[0, :] = 0
u[-1, :] = 0
v[0, :] = 0
v[-1, :]=0
udiff = (numpy.sum(u) - numpy.sum(un)) / numpy.sum(u)
stepcount += 1
fig = pyplot.figure(figsize = (11,7), dpi=100)
pyplot.quiver(X[::3, ::3], Y[::3, ::3], u[::3, ::3], v[::3, ::3]);
```
{{< figure src="https://blog.kakaocdn.net/dn/du6hla/btq9fdKZP6o/ifKi67Tsr8khMmReNSHn5K/img.png" >}}
출처> [CFD Python: 12 steps to Navier-Stokes :: Lorena A. Barba Group (lorenabarba.com)](https://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/)