222 lines
6.8 KiB
Plaintext
222 lines
6.8 KiB
Plaintext
|
#include "mat_mul.h"
|
||
|
|
||
|
#include <cstdio>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define BLOCK_DIM 4
|
||
|
#define TS 32
|
||
|
#define WPT 16
|
||
|
#define RTS (TS/WPT)
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define MAX_NUM_GPU 4
|
||
|
int num_devices = 0;
|
||
|
// n->K p->N m->M
|
||
|
__global__ void sgemm(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
const int row = threadIdx.x;//); // row index of C
|
||
|
const int col = threadIdx.y;//); // column index of C
|
||
|
const int global_row = (blockDim.x*WPT)* blockIdx.x + threadIdx.x;
|
||
|
const int global_col = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
__shared__ float subA[TS][TS];
|
||
|
__shared__ float subB[TS][TS];
|
||
|
|
||
|
float accum[WPT];
|
||
|
for (int w = 0; w < WPT; w++) {
|
||
|
accum[w] = 0.0f;
|
||
|
}
|
||
|
|
||
|
const int num_tiles = (K+TS-1)/TS;
|
||
|
for (int t = 0; t < num_tiles; t++) {
|
||
|
for (int w = 0; w < WPT; w++) {
|
||
|
const int tiledRow = TS*t + row;
|
||
|
const int tiledCol = TS*t + col;
|
||
|
/*if (M <= global_row) subA[row + w*RTS][col] = 0.0f;
|
||
|
else*/
|
||
|
|
||
|
if (K <= tiledCol) subA[row + w*RTS][col] = 0.0f;
|
||
|
else if (M <= (global_row + w*RTS)) subA[row + w*RTS][col] = 0.0f;
|
||
|
|
||
|
else
|
||
|
subA[row + w*RTS][col] = A[(global_row + w*RTS)*K + tiledCol];
|
||
|
|
||
|
if (N <= global_col) subB[row + w*RTS][col] = 0.0f;
|
||
|
//else if (K <= tiledRow) subB[row + w*RTS][col] = 0.0f;
|
||
|
else if (K <= (tiledRow + w*RTS)) subB[row + w*RTS][col] = 0.0f;
|
||
|
|
||
|
else
|
||
|
subB[row + w*RTS][col] = B[(tiledRow + w*RTS)*N + global_col];
|
||
|
}
|
||
|
__syncthreads();
|
||
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
for (int k = 0; k < TS; k++) {
|
||
|
for (int w = 0; w < WPT; w++) {
|
||
|
accum[w] += subA[row + w*RTS][k] * subB[k][col];
|
||
|
}
|
||
|
}
|
||
|
//barrier(CLK_LOCAL_MEM_FENCE);
|
||
|
__syncthreads();
|
||
|
}
|
||
|
for (int w = 0; w < WPT; w++) {
|
||
|
if (M <= (global_row + w*RTS));// C[(global_row + w*RTS)*N + global_col] = 0.0f;
|
||
|
else if (N <= global_col);// C[(global_row + w*RTS)*N + global_col] = 0.0f;
|
||
|
else
|
||
|
C[(global_row + w*RTS)*N + global_col] = accum[w];
|
||
|
}
|
||
|
/*
|
||
|
__shared__ float A_tile[BLOCK_DIM][BLOCK_DIM];
|
||
|
__shared__ float B_tile[BLOCK_DIM][BLOCK_DIM];
|
||
|
|
||
|
float acc_sum{0};
|
||
|
|
||
|
for (int tile_idx{0};
|
||
|
tile_idx < ceilf(static_cast<float>(K) / BLOCK_DIM); ++tile_idx)
|
||
|
{
|
||
|
int i{blockIdx.y * blockDim.y + threadIdx.y};
|
||
|
int j{tile_idx * blockDim.x + threadIdx.x};
|
||
|
if ((i < M) && (j < K))
|
||
|
{
|
||
|
A_tile[threadIdx.y][threadIdx.x] = A[i * K + j];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
A_tile[threadIdx.y][threadIdx.x] = 0;
|
||
|
}
|
||
|
i = tile_idx * blockDim.y + threadIdx.y;
|
||
|
j = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
if ((i < K) && (j < N))
|
||
|
{
|
||
|
B_tile[threadIdx.y][threadIdx.x] = B[i * N + j];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
B_tile[threadIdx.y][threadIdx.x] = 0;
|
||
|
}
|
||
|
__syncthreads();
|
||
|
for (int k{0}; k < BLOCK_DIM; ++k)
|
||
|
{
|
||
|
acc_sum += A_tile[threadIdx.y][k] * B_tile[k][threadIdx.x];
|
||
|
printf("threadidx.y %d k %d threadidx.x %d k %d \n", threadIdx.y, k, threadIdx.x, k);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
}
|
||
|
|
||
|
// 2D block and 2D thread
|
||
|
// Each thread computes one cell in C.
|
||
|
int i{blockIdx.y * blockDim.y + threadIdx.y};
|
||
|
int j{blockIdx.x * blockDim.x + threadIdx.x};
|
||
|
|
||
|
if ((i < M) && (j < N))
|
||
|
{
|
||
|
C[i * N + j] = acc_sum;
|
||
|
}
|
||
|
*/
|
||
|
/*
|
||
|
int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
int j = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
if (i >= M || j >= N)
|
||
|
return;
|
||
|
|
||
|
C[i * N + j] = 0;
|
||
|
for (int k = 0; k < K; ++k) {
|
||
|
C[i * N + j] += A[i * K + k] * B[k * N + j];
|
||
|
}
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
// Array of device (GPU) pointers
|
||
|
static float *a_d[MAX_NUM_GPU];
|
||
|
static float *b_d[MAX_NUM_GPU];
|
||
|
static float *c_d[MAX_NUM_GPU];
|
||
|
static int M, N, K;
|
||
|
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
|
||
|
|
||
|
void mat_mul(float *_A, float *_B, float *_C, int _M, int _N, int _K) {
|
||
|
// Launch kernel on every GPU
|
||
|
int M_size[MAX_NUM_GPU];
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
//dim3 blockDim(1, 1, 1);
|
||
|
//dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
|
||
|
dim3 blockDim(TS/WPT, TS, 1);
|
||
|
dim3 gridDim(((Mend[i] - Mbegin[i] + TS -1)/TS), (N+TS-1)/TS,1);
|
||
|
M_size[i] = Mend[i] - Mbegin[i];
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
sgemm<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M_size[i], N, K);
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_init(float *A, float *B, float *C, int _M, int _N, int _K) {
|
||
|
M = _M, N = _N, K = _K;
|
||
|
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
printf("Using %d devices\n", num_devices);
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
cudaDeviceProp prop;
|
||
|
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
|
||
|
|
||
|
// Try printing more detailed information here
|
||
|
printf("[GPU %d] %s\n", i, prop.name);
|
||
|
}
|
||
|
|
||
|
if (num_devices <= 0) {
|
||
|
printf("No CUDA device found. Aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
// Setup problem size for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Mbegin[i] = (M / num_devices) * i;
|
||
|
Mend[i] = (M / num_devices) * (i + 1);
|
||
|
}
|
||
|
Mend[num_devices - 1] = M;
|
||
|
|
||
|
// Allocate device memory for each GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&b_d[i], K * N * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)) );
|
||
|
}
|
||
|
|
||
|
// Upload A and B matrix to every GPU
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(a_d[i], A + Mbegin[i] * K,
|
||
|
(Mend[i] - Mbegin[i]) * K * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mat_mul_final(float *A, float *B, float *C, int M, int N, int K) {
|
||
|
// Do any post-matmul cleanup work here.
|
||
|
|
||
|
// Download C matrix from GPUs
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(C + Mbegin[i] * N, c_d[i],
|
||
|
(Mend[i] - Mbegin[i]) * N * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
|
||
|
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|