chundoong-lab-ta/SHPC2022/hw6/matmul/matmul.cu

129 lines
3.9 KiB
Plaintext
Raw Normal View History

2022-11-24 00:22:27 +09:00
#include "matmul.h"
#include "util.h"
#include <cuda_runtime.h>
#include <mpi.h>
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
#define MAX_NUM_GPU 4
int num_devices = 0;
__global__ void matmul_kernel(float *A, float *B, float *C, int M, int N,
int K) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
int j = blockDim.y * blockIdx.y + threadIdx.y;
if (i >= M || j >= N)
return;
C[i * N + j] = 0;
for (int k = 0; k < K; ++k) {
C[i * N + j] += A[i * K + k] * B[k * N + j];
}
}
static int mpi_rank, mpi_world_size;
// Array of device (GPU) pointers
static float *a_d[MAX_NUM_GPU];
static float *b_d[MAX_NUM_GPU];
static float *c_d[MAX_NUM_GPU];
static int Mbegin[MAX_NUM_GPU], Mend[MAX_NUM_GPU];
void matmul(const float *A, const float *B, float *C, int M, int N, int K) {
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL(cudaMemcpy(a_d[i], A + Mbegin[i] * K,
(Mend[i] - Mbegin[i]) * K * sizeof(float),
cudaMemcpyHostToDevice));
CUDA_CALL(
cudaMemcpy(b_d[i], B, K * N * sizeof(float), cudaMemcpyHostToDevice));
}
// Launch kernel on every GPU
for (int i = 0; i < num_devices; i++) {
dim3 blockDim(1, 1, 1);
dim3 gridDim(Mend[i] - Mbegin[i], N, 1);
CUDA_CALL(cudaSetDevice(i));
matmul_kernel<<<gridDim, blockDim>>>(a_d[i], b_d[i], c_d[i], M, N, K);
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL(cudaDeviceSynchronize());
}
// Download C matrix from GPUs
for (int i = 0; i < num_devices; i++) {
CUDA_CALL(cudaMemcpy(C + Mbegin[i] * N, c_d[i],
(Mend[i] - Mbegin[i]) * N * sizeof(float),
cudaMemcpyDeviceToHost));
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL(cudaDeviceSynchronize());
}
}
void matmul_initialize(int M, int N, int K) {
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
// Only root process do something
if (mpi_rank == 0) {
CUDA_CALL(cudaGetDeviceCount(&num_devices));
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL(cudaGetDeviceProperties(&prop, i));
// Try printing more detailed information here
printf("GPU %d: %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
// Setup problem size for each GPU
for (int i = 0; i < num_devices; i++) {
Mbegin[i] = (M / num_devices) * i;
Mend[i] = (M / num_devices) * (i + 1);
}
Mend[num_devices - 1] = M;
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL(cudaSetDevice(i));
CUDA_CALL(cudaMalloc(&a_d[i], (Mend[i] - Mbegin[i]) * K * sizeof(float)));
CUDA_CALL(cudaMalloc(&b_d[i], K * N * sizeof(float)));
CUDA_CALL(cudaMalloc(&c_d[i], (Mend[i] - Mbegin[i]) * N * sizeof(float)));
}
}
}
void matmul_finalize() {
// Only root process do something
if (mpi_rank == 0) {
// Free all GPU memory
for (int i = 0; i < num_devices; i++) {
CUDA_CALL(cudaFree(a_d[i]));
CUDA_CALL(cudaFree(b_d[i]));
CUDA_CALL(cudaFree(c_d[i]));
}
}
}