chundoong-lab-ta/SamsungDS22/submissions/final/jaehyun5.kim/tmp-B/convolution.cu

197 lines
6.6 KiB
Plaintext
Raw Normal View History

2022-09-29 18:01:45 +09:00
#include "convolution.h"
#include <mpi.h>
#include <stdio.h>
#include <cuda_runtime.h>
#include "util.h"
#define MAX_NUM_GPU 4
#define TS 8
#define CUDA_CALL(f) \
{ \
cudaError_t err = (f); \
if (err != cudaSuccess) { \
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
err, cudaGetErrorString(err)); \
exit(1); \
} \
}
static float *input, *output, *filter;
static int N, C, H, W;
static int K, R, S;
static int OH, OW;
static int pad;
static int dilation;
static int stride;
static int mpi_rank, mpi_world_size;
int num_devices = 4;
__global__ void conv(
float *_input, float *_output, float *_filter,
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
int OH, OW;
const int globalRow = blockDim.x * blockIdx.x + threadIdx.x;
const int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
int n,k,w;
w = globalCol;
n = w/(_K*OH);
w = w - n*(_K*OW);
k = w / OW;
w = w - k * OH;
int col = w;
int row = globalRow;
if(globalRow >= OH || globalCol >= _N*_K*OW) return;
int start_row = row * _stride - _pad;
int start_col = col * _stride - _pad;
float o = 0.f;
for (int c = 0; c < _C; ++c) {
for (int r = 0; r < _R; ++r) {
for (int s = 0; s < _S; ++s) {
int h = start_row + r * _dilation;
int w = start_col + s * _dilation;
if (h < 0 || h >= _H || w < 0 || w >= _W) continue;
float i = _input[n * _C * _H * _W + c * _H * _W + h * _W + w];
float f = _filter[k * _C * _R * _S + c * _R * _S + r * _S + s];
o += i * f;
}
}
}
_output[n * _K * OH * OW + k * OH * OW + row * OW + col] = o;
// __syncthreads();
}
static float *in_d[MAX_NUM_GPU];
static float *out_d[MAX_NUM_GPU];
static float *filter_d[MAX_NUM_GPU];
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU];
void convolution(float* _input, float* _output, float* _filter, int _N, int _C, int _H, int _W,
int _K, int _R, int _Rs, int _pad, int _dilation, int _stride){
int size[2];
MPI_Request request;
MPI_Status status;
if(mpi_world_size == 2) size[1] = _N/2;
else size[1] = 0;
size[0] = _N-size[1];
if (mpi_rank == 0 && mpi_world_size==2) {
MPI_Isend(&_input[size[0] * _C * _H * _W], size[1] * _C * _H * _W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
MPI_Isend(_filter, _K*_C*_R*_Rs, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
}
else if(mpi_world_size==2){
alloc_tensor(&_input, size[1], _C, _H, _W);
alloc_tensor(&_output, size[1], _K, OH, OW);
alloc_tensor(&_filter, _K, _C, _R, _Rs);
MPI_Recv(_input, size[1]*_C*_H*_W, MPI_FLOAT, 0,0,MPI_COMM_WORLD, &status);
MPI_Recv(_filter, _K*_C*_R*_Rs, MPI_FLOAT, 0,0, MPI_COMM_WORLD, &status);
}
// Upload A and B matrix to every GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaMemcpy(in_d[i], _input + (Nbegin[i]-size[1]*mpi_rank) * _C * _H * _W, (Nend[i]-Nbegin[i]) * _C * _H * _W * sizeof(float), cudaMemcpyHostToDevice) );
CUDA_CALL( cudaMemcpy(filter_d[i], _filter, _K * _C * _R * _Rs * sizeof(float), cudaMemcpyHostToDevice) );
}
for(int i=0;i<num_devices;i++){
dim3 gridDim((OH+TS-1)/TS, ((Nend[i]-Nbegin[i])*K*OW+TS-1)/TS,1);
dim3 blockDim(TS, TS, 1);
CUDA_CALL(cudaSetDevice(i));
conv<<<gridDim, blockDim>>>(in_d[i], out_d[i], filter_d[i], (Nend[i]-Nbegin[i]), _C, _H, _W, _K, _R, _Rs, _pad, _dilation, _stride);
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL ( cudaMemcpy( _output+(Nbegin[i]-size[1]*mpi_rank)* _K * OH * OW, out_d[i], (Nend[i]-Nbegin[i]) * _K * OH * OW*sizeof(float), cudaMemcpyDeviceToHost));
}
if(mpi_rank == 0 && mpi_world_size==2){
MPI_Recv(&_output[size[0]*_K*OH*OW], size[1]*_K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
}
else if(mpi_world_size==2){
MPI_Isend(_output, size[1]*_K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD,&request);
}
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_init(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
N = _N; C = _C; H = _H; W = _W;
K = _K; R = _R; S = _S;
pad = _pad;
dilation = _dilation;
stride = _stride;
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
printf("Using %d devices\n", num_devices);
for (int i = 0; i < num_devices; i++) {
cudaDeviceProp prop;
CUDA_CALL( cudaGetDeviceProperties(&prop, i) );
// Try printing more detailed information here
printf("[GPU %d] %s\n", i, prop.name);
}
if (num_devices <= 0) {
printf("No CUDA device found. Aborting\n");
exit(1);
}
if(mpi_rank==0){
for (int i = 0; i < num_devices; i++) {
Nbegin[i] = (N / num_devices) * i/mpi_world_size;
Nend[i] = (N / num_devices) * (i + 1)/mpi_world_size;
}
Nend[num_devices - 1] = N/mpi_world_size;
}
else {
for(int i=0;i<num_devices;i++){
Nbegin[i] = (N / num_devices) * i/mpi_world_size + N/mpi_world_size;
Nend[i] = (N / num_devices) * (i+1)/mpi_world_size + N/mpi_world_size;
}
Nend[num_devices - 1] = N;
}
// Allocate device memory for each GPU
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaSetDevice(i) );
CUDA_CALL( cudaMalloc(&in_d[i], (Nend[i]-Nbegin[i]) * C * H * W * sizeof(float)) );
CUDA_CALL( cudaMalloc(&out_d[i], (Nend[i]-Nbegin[i]) * K * OH * OW * sizeof(float)) );
CUDA_CALL( cudaMalloc(&filter_d[i], K * C * R * S * sizeof(float)) );
}
// DO NOT REMOVE; NEEDED FOR TIME MEASURE
for (int i = 0; i < num_devices; i++) {
CUDA_CALL( cudaDeviceSynchronize() );
}
}
void convolution_final(
int _N, int _C, int _H, int _W,
int _K, int _R, int _S,
int _pad, int _dilation, int _stride) {
}