166 lines
5.5 KiB
Plaintext
166 lines
5.5 KiB
Plaintext
|
#include "util.h"
|
||
|
#include <cstdio>
|
||
|
#include "convolution.h"
|
||
|
#include <mpi.h>
|
||
|
#include <stdio.h>
|
||
|
#include <cuda_runtime.h>
|
||
|
|
||
|
#define TS 8
|
||
|
#define MAX_NUM_GPU 4
|
||
|
#define CUDA_CALL(f) \
|
||
|
{ \
|
||
|
cudaError_t err = (f); \
|
||
|
if (err != cudaSuccess) { \
|
||
|
fprintf(stderr, "CUDA error at [%s:%d] %d %s\n", __FILE__, __LINE__, \
|
||
|
err, cudaGetErrorString(err)); \
|
||
|
exit(1); \
|
||
|
} \
|
||
|
}
|
||
|
static float *input, *output, *filter;
|
||
|
static int N, C, H, W;
|
||
|
static int K, R, S;
|
||
|
static int OH, OW;
|
||
|
static int pad;
|
||
|
static int dilation;
|
||
|
static int stride;
|
||
|
static int mpi_rank, mpi_world_size;
|
||
|
int num_devices = 0;
|
||
|
__global__ void conv(
|
||
|
float *_input, float *_output, float *_filter,
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
const int globalRow = blockDim.x * blockIdx.x + threadIdx.x;
|
||
|
const int globalCol = blockDim.y * blockIdx.y + threadIdx.y;
|
||
|
int OH, OW;
|
||
|
|
||
|
OH = (_H + 2 * _pad - _dilation * (_R - 1) - 1) / _stride + 1;
|
||
|
OW = (_W + 2 * _pad - _dilation * (_S - 1) - 1) / _stride + 1;
|
||
|
|
||
|
int n, k, w;
|
||
|
w = globalCol;
|
||
|
n = w / (_K*OW);
|
||
|
w = w - n * (_K*OW);
|
||
|
k = w / OW;
|
||
|
w = w - k*OW;
|
||
|
int col = w;
|
||
|
int row = globalRow;
|
||
|
if (globalRow >= OH || globalCol >= _N*_K*OW) return;
|
||
|
|
||
|
int start_row = row * _stride - _pad;
|
||
|
int start_col = col * _stride - _pad;
|
||
|
float o = 0.0f;
|
||
|
for (int c = 0; c < _C; c++) {
|
||
|
for (int i = 0; i < _R; i++) {
|
||
|
for (int j = 0; j < _S; j++) {
|
||
|
int h = start_row + i * _dilation;
|
||
|
int w = start_col + j * _dilation;
|
||
|
if (h <0 || w <0 || h >=_H || w >=_W) continue;
|
||
|
float in = _input[n*_C*_W*_H + c*_W*_H + h*_W + w];
|
||
|
float fil = _filter[k*_C*_R*_S + c*_R*_S+ i*_S +j];
|
||
|
o += in * fil;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
_output[n*_K*OH*OW + k*OH*OW + row*OW + col] = o;
|
||
|
|
||
|
}
|
||
|
|
||
|
static float *in_d[MAX_NUM_GPU];
|
||
|
static float *out_d[MAX_NUM_GPU];
|
||
|
static float *fil_d[MAX_NUM_GPU];
|
||
|
static int Nbegin[MAX_NUM_GPU], Nend[MAX_NUM_GPU];
|
||
|
int size[2];
|
||
|
void convolution(
|
||
|
float *_input, float *_output, float *_filter,
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
//CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
MPI_Request request;
|
||
|
MPI_Status status;
|
||
|
|
||
|
input = _input;
|
||
|
output = _output;
|
||
|
filter = _filter;
|
||
|
|
||
|
if (mpi_world_size == 2) size[1] = _N/2;
|
||
|
else size[1] = 0;
|
||
|
size[0] = _N-size[1];
|
||
|
|
||
|
OH = (H + 2 * pad - dilation * (R - 1) - 1) / stride + 1;
|
||
|
OW = (W + 2 * pad - dilation * (S - 1) - 1) / stride + 1;
|
||
|
|
||
|
if (mpi_rank == 0 && mpi_world_size == 2) {
|
||
|
MPI_Isend(&input[size[0]*C*H*W], size[1]*C*H*W, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
|
||
|
MPI_Isend(filter, K*C*R*S, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &request);
|
||
|
} else if (mpi_world_size == 2) {
|
||
|
alloc_tensor(&input, size[1], C, H, W);
|
||
|
alloc_tensor(&output, size[1], K, OH, OW);
|
||
|
alloc_tensor(&filter, K, C, R, S);
|
||
|
MPI_Recv(input, size[1]*C*H*W, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
||
|
MPI_Recv(filter, K*C*R*S, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
|
||
|
}
|
||
|
int n = size[mpi_rank];
|
||
|
CUDA_CALL( cudaGetDeviceCount(&num_devices) );
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
Nbegin[i] = (n/ num_devices) * i;
|
||
|
Nend[i] = (n/ num_devices) * (i + 1);
|
||
|
}
|
||
|
Nend[num_devices - 1] = n;
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
CUDA_CALL( cudaMalloc(&in_d[i], (Nend[i] - Nbegin[i]) * _C * _H * _W * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&out_d[i], (Nend[i] - Nbegin[i]) * _K * OH * OW * sizeof(float)) );
|
||
|
CUDA_CALL( cudaMalloc(&fil_d[i], _K * _C * _R * _S * sizeof(float)) );
|
||
|
}
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(in_d[i], input + Nbegin[i] * _C*_H*_W,
|
||
|
(Nend[i] - Nbegin[i]) * _C*_H*_W * sizeof(float),
|
||
|
cudaMemcpyHostToDevice) );
|
||
|
CUDA_CALL( cudaMemcpy(fil_d[i], filter, _K * _C*_R*_S * sizeof(float), cudaMemcpyHostToDevice) );
|
||
|
}
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
dim3 gridDim((OH+TS-1)/TS, ((Nend[i] - Nbegin[i])*_K*OW+TS-1)/TS,1);
|
||
|
dim3 blockDim(TS,TS,1);
|
||
|
CUDA_CALL( cudaSetDevice(i) );
|
||
|
conv<<<gridDim, blockDim>>>(in_d[i], out_d[i], fil_d[i], Nend[i] - Nbegin[i], _C,_H,_W,_K,_R,_S,_pad,_dilation,_stride);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
void convolution_init(
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
N = _N; C = _C; H = _H; W = _W;
|
||
|
K = _K; R = _R; S = _S;
|
||
|
pad = _pad;
|
||
|
dilation = _dilation;
|
||
|
stride = _stride;
|
||
|
|
||
|
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
|
||
|
MPI_Comm_size(MPI_COMM_WORLD, &mpi_world_size);
|
||
|
|
||
|
}
|
||
|
|
||
|
void convolution_final(
|
||
|
int _N, int _C, int _H, int _W,
|
||
|
int _K, int _R, int _S,
|
||
|
int _pad, int _dilation, int _stride) {
|
||
|
MPI_Request request;
|
||
|
MPI_Status status;
|
||
|
for (int i = 0; i < num_devices; i++) {
|
||
|
CUDA_CALL( cudaMemcpy(output + (Nbegin[i] * _K*OH*OW), out_d[i],
|
||
|
(Nend[i] - Nbegin[i]) * _K*OH*OW * sizeof(float),
|
||
|
cudaMemcpyDeviceToHost) );
|
||
|
}
|
||
|
if (mpi_rank == 0 && mpi_world_size == 2) {
|
||
|
MPI_Recv(&output[size[0]*K*OH*OW], size[1]*K*OH*OW, MPI_FLOAT, 1, 0, MPI_COMM_WORLD, &status);
|
||
|
} else if (mpi_world_size == 2) {
|
||
|
MPI_Isend(output, size[1]*K*OH*OW, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &request);
|
||
|
}
|
||
|
}
|